Neuropsychiatric Disorders Classification using EEG Signal and Deep Neural Networks

  • Mateus Balda Mota UNIPAMPA
  • Alessandro Bof de Oliveira UNIPAMPA
  • Patricia Bof UNIPAMPA
  • Dante Augusto Couto Barone UFRGS

Resumo


Electroencephalogram (EEG) is widely used to measure brain activity and serves as a promising tool in the diagnosis of neuropsychiatric disorders such as anxiety, schizophrenia, and epilepsy, among others. We proposed a deep neural network model to classify neuropsychiatric conditions using EEG signals. The data was processed with PSD and FC features using SMOTE method to handle with unbalanced classes and dimensionality reduction using PCA. The model achieved an accuracy of 71.43% and a mean AUC of 0.9383, with better performance in the obsessive compulsive and anxiety disorders classification. At the same time, mood disorder showed to be more challenging in the classification.

Referências

Ahmed, Z., Wali, A., Shahid, S., Zikria, S., Rasheed, J., and Asuroglu, T. (2024). Psychiatric disorders from eeg signals through deep learning models. IBRO Neuroscience Reports.

Ay, B., Yildirim, O., Talo, M., Baloglu, U. B., Aydin, G., Puthankattil, S. D., and Acharya, U. R. (2019). Automated depression detection using deep representation and sequence learning with eeg signals. Journal of Medical Systems, 43:1–12.

Beniczky, S. and Schomer, D. L. (2020). Electroencephalography: basic biophysical and technological aspects important for clinical applications. Epileptic Disorders, 22:697–715.

Brownlee, J. (2021). Tour of evaluation metrics for imbalanced classification. Acessado em: 27 nov. 2024.

Haykin, S. (2011). Neural networks: principles and practice. Bookman, 11(900).

Júnior, S. B. (2023). Algoritmos genéticos e aprendizado profundo baseado em redes neurais recorrentes do tipo lstm para auxílio ao diagnóstico médico.

Müller-Putz, G. R. (2020). Electroencephalography. Handbook of Clinical Neurology, 168:249–262.

Park, S. M. (2021). Eeg machine learning. Retrieved August 16, 2021, from [link].

Park, S. M., Jeong, B., Oh, D. Y., Choi, C. H., Jung, H. Y., Lee, J. Y., Lee, D., and Choi, J. S. (2021). Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach. Frontiers in Psychiatry, 12:707581.

Parsa, M., Rad, H. Y., Vaezi, H., Hossein-Zadeh, G.-A., Setarehdan, S. K., Rostami, R., Rostami, H., and Vahabie, A.-H. (2023). Eeg-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions. Computer Methods and Programs in Biomedicine, 240:107683.

Russell, S. J. and Norvig, P. (2022). Artificial intelligence: a modern approach. Pearson.

Shah, S. J. H., Albishri, A., Kang, S. S., Lee, Y., Sponheim, S. R., and Shim, M. (2023). Etsnet: A deep neural network for eeg-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classification. Computers in Biology and Medicine, 158:106857.

Siuly, S., Li, Y., and Zhang, Y. (2016). Eeg signal analysis and classification. IEEE Trans Neural Syst Rehabilit Eng, 11:141–144.

Wang, Z., Feng, J., Jiang, R., Shi, Y., Li, X., Xue, R., Du, X., Ji, M., Zhong, F., Meng, Y., et al. (2022). Automated rest eeg-based diagnosis of depression and schizophrenia using a deep convolutional neural network. IEEE Access, 10:104472–104485.

World Health Organization (2022). Mental disorders. Accessed: 2024-10-10.
Publicado
09/06/2025
MOTA, Mateus Balda; OLIVEIRA, Alessandro Bof de; BOF, Patricia; BARONE, Dante Augusto Couto. Neuropsychiatric Disorders Classification using EEG Signal and Deep Neural Networks. In: TECNOLOGIAS ASSISTIVAS, INTELIGÊNCIA ARTIFICIAL E CIÊNCIA DE DADOS - SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 287-292. ISSN 2763-8987. DOI: https://doi.org/10.5753/sbcas_estendido.2025.7219.