iHorus: Uma Contribuição à Gestão de Serviços no Saneamento Básico Explorando Ciência de Contexto na IoT
Abstract
This paper presents the conception of iHorus framework as part of SANEP-I2MF, aimed at capturing sensed information in a widely distributed operational base to meet the demands of Pelotas Autonomous Sanitation Service (SANEP). The proposed solution employs the EXEHDA middleware and exploits context-awareness to infer the state of different electromechanical artifacts present in the basic sanitation infrastructure of Pelotas. The Internet of Things (IoT) is adopted as a ubiquitous resource to meet the different interoperability requirements. To evaluate iHorus, the TAM Model (Technology Acceptance Model) was used, measuring its perceived usefulness and ease of use among different segments of the user community. The results were promising and point to the continuity of the research.
References
Correa, C., Dujovne, D., and Bolaño, F. (2022). Design and implementation of an embedded edge-processing water quality monitoring system for underground waters. IEEE Embedded Systems Letters, pages 1–1.
Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8):982–1003.
DeVellis, R. F. (2016). Scale development: Theory and applications, volume 26. Sage publications.
Gonçalves, R., J. M. Soares, J., and M. F. Lima, R. (2020). An IoT-based framework for smart water supply systems management. Future Internet, 12(7).
Ighalo, J. O., Adeniyi, A. G., and Marques, G. (2020). Internet of things for water quality monitoring and assessment: A comprehensive review. In Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, pages 245–259. Springer International Publishing.
Joshi, A., Kale, S., Chandel, S., and Pal, D. K. (2015). Likert scale: Explored and explained. British journal of applied science & technology, 7(4):396.
Júnior, A. C. D. S., Munoz, R., Quezada, M. D. L. A., Neto, A. V. L., Hassan, M. M., and Albuquerque, V. H. C. D. (2021). Internet of water things: A remote raw water monitoring and control system. IEEE Access, 9:35790–35800.
Júnior, W. B. L. (2019). Modelagem de um sistema multiparâmetro para monitoramento da qualidade da água utilizando internet das coisas. Dissertação de mestrado em modelagem computacional de sistemas, Programa de Pós-Graduação Profissional em Modelagem Computacional (PPGMCS/UFT), Palmas-TO.
Lah, U., Lewis, J. R., and Šumak, B. (2020). Perceived usability and the modified technology acceptance model. International Journal of Human–Computer Interaction, 36(13):1216–1230.
LOPES, J. L., GEYER, C. F. R., BARBOSA, J. L., PERNAS, A. M., and YAMIN, A. C. (2014). A middleware architecture for dynamic adaptation in ubiquitous computing. Journal of Universal Computer Science, 20(9):1327–1351.
Panduman, Y. Y. F., Funabiki, N., Puspitaningayu, P., Kuribayashi, M., Sukaridhoto, S., and Kao, W.-C. (2022). Design and implementation of SEMAR IoT server platform with applications. Sensors, 22(17).
Rocha, N. P., Dias, A., Santinha, G., Rodrigues, M., Rodrigues, C., Queirós, A., Bastardo, R., and Pavão, J. (2022). Systematic literature review of context-awareness applications supported by smart cities’ infrastructures. SN Applied Sciences, 4(4).
Sejdiu, B., Ismaili, F., and Ahmedi, L. (2021). Iotsas: An integrated system for real-time semantic annotation and interpretation of IoT sensor stream data. Computers, 10(10).
Souza, R., Lopes, J., Geyer, C., Cardozo, A., Yamin, A., and Barbosa, J. (2018). An architecture for IoT management targeted to context awareness of ubiquitous applications. Journal of Universal Computer Science, 24(10):1452–1471.
