Analysis of a Hybrid Neural Network as a Basis for a Situation Prediction Mechanism

  • Carlos O. Rolim UFRGS
  • Anubis Rossetto UFRGS
  • Valderi R. Q. Leithardt UFRGS
  • Cláudio F. R. Geyer UFRGS

Abstract


This paper presents the results towards a technique that can be used as an underlying mechanism for situational prediction. We analyzed a hybrid neural network called Multioutput Adaptive Neural Fuzzy Inference System (MANFIS) and its predictive ability was compared with a Multi Layer Perceptron (MLP). The results demonstrate that depending of application the use of neural networks can be considered a good approach for the situational prediction when combined with other techniques.

References

Abraham, A. (2005). Adaptation of Fuzzy Inference System Using Neural Learning. Architecture, 83, 5383.

Alves Lino, J., Salem, B., & Rauterberg, M. (2010). Responsive environments: User experiences for ambient intelligence. Journal of Ambient, 2(4), 347–367. IOS Press. DOI: 10.3233/AIS-2010-0080

Anagnostopoulos, T., Anagnostopoulos, C. B., Hadjiefthymiades, S., Kalousis, A., & Kyriakakos, M. (2007). Path Prediction through Data Mining. Artificial Intelligence, 128-135. IEEE.

Anagnostopoulos, T., Anagnostopoulos, C., & Hadjiefthymiades, S. (2009). An Online Adaptive Model for Location Prediction. Autonomics’09 (pp. 64-78).

Anagnostopoulos, T., Anagnostopoulos, C., & Hadjiefthymiades, S. (2011). An adaptive location prediction model based on fuzzy control. Computer Communications, 34(7), 816-834.

Anagnostopoulos, T., Anagnostopoulos, C., Hadjiefthymiades, S., Kyriakakos, M., & Kalousis, A. (2009). Predicting the location of mobile users: a machine learning approach. Proceedings of the 2009 international conference on Pervasive services (pp. 65-72). ACM. DOI: 10.1145/1568199.1568210

Augusto, Juan Carlos, & Shapiro, D. (2007). Notes from editors. Frontiers in Artificial Intelligence and Applications, 164.

Benmiloud, T. (2010). Multioutput adaptive neuro-fuzzy inference system. In 11th WSEAS international conference on neural networks (pp. 94-98). Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS).

Benta, K.-I., Cremene, M., & Todica, V. (2009). Towards an Affective Aware Home. Proceedings of the ICOST (pp. 74-81).

Benta, K.-I., Hoszu, A., Văcariu, L., & Creţ, O. (2009). Agent based smart house platform with affective control. Proceedings of the 2009 Euro American Conference on Telematics and Information Systems New Opportunities to increase Digital Citizenship, 1-7. ACM Press. DOI: 10.1145/1551722.1551740

Benta, K.-iulian, Cremene, M., Hoszu, A., Editors, M., Margaria, T., Padberg, J., & Taentzer, G. (2010). Training the Behaviour Preferences on Context Changes. ECEASST, 28.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Comp., 6(2), 161-180.

Buchmayr, M., & Kurschl, W. (2011). A survey on situation-aware ambient intelligence systems. Journal of Ambient Intelligence and Humanized Computing, 2(3), 175-183. DOI: 10.1007/s12652-011-0055-1

Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: applications in society and opportunities for artificial intelligence. Pervasive and Mobile Computing.

Costa, C. A. (2008). Continuum: A Context-aware Service-based Software Infrastructure for Ubiquitous Computing. UFRGS.

Dey, A. K. (2001). Understanding and Using Context. (A. K. Dey, G. Kortüm, D. R. Morse, & A. Schmidt, Eds.)Personal and Ubiquitous Computing, 5(1), 4-7. Springer-Verlag. DOI: 10.1007/s007790170019

Elmahalawy, A. M., Elfishawy, N., & El-dien, M. N. (2010). Anticipation the consumed electrical power in Smart Home using evolutionary algorithms. 2010 International Conference on Multimedia Computing and Information Technology MCIT, 81-84. Ieee. DOI: 10.1109/MCIT.2010.5444847

Endsley, M. R. (2006). Situation Awareness. In G. Salvendy (Ed.), Handbook of Human Factors and Ergonomics (pp. 528-542). John Wiley & Sons Ltd. DOI: 10.1002/0470048204.ch20

Endsley, M. R., & Connors, E. S. (2008). Situation Awareness: State of the Art. Energy, 13-16.

Gellersen, H., Schmidt, A., & Beigl, M. (2002). Multi-Sensor Context-Awareness in Mobile Devices and Smart Artefacts. Mobile Networks and Applications, 7(5), 341-351.

Kluwer Academic Publishers Haykin, S. (2011). Redes Neurais Principios e práticas (2nd ed.).

Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. Ieee Transactions On Systems Man And Cybernetics, 23(3), 665-685. IEEE. DOI: 10.1109/21.256541

Kasteren, T. L. M., Englebienne, G., & Kröse, B. J. a. (2010). An activity monitoring system for elderly care using generative and discriminative models. Personal and Ubiquitous Computing, 14(6), 489-498.

Leithardt, V. R. Q. Geyer, C. F. R., Nunes, D., Silva, S. J.;, Rolim, C. O., Rosseto, A. G. de M., Dantas, M. A. . (2012). Percontrol A Pervasive System for Educational Environments using Wireless Sensor Networks. International Conference on Computing, Networking and Comm. (ICNC 2012).

Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197(4300), 287-289. DOI: 10.1126/science.267326

Marza, V., & Teshnehlab, M. (2009). Estimating Development Time and Effort of Software Projects by using a Neuro_Fuzzy Approach. In K. Jayanthakumaran (Ed.), Advanced Technologies (pp. 395-412).

Ramos, C., Augusto, J. C., & Shapiro, D. (2008). Ambient intelligence: The next step for artificial intelligence. IEEE Intelligent Systems, 23(2), 15–18.

Yamin, A. C. (2004). Arquitetura para um Ambiente de Grade Computacional Direcionada às Aplicações Distribuídas, Móveis e Conscientes de Contexto da Computação Pervasiva. UUFRGS.

Yau, S. S., Huang, D., Gong, H., & Science, C. (2004). Development and Runtime Support for Situation-Aware Application Software in Ubiquitous Computing Environments. Computer.

Yau, S. S., Wang, Y., Karim, F., & Science, C. (2002). Development of Situation-Aware Application Software for Ubiquitous Computing Environments. Computer.

Ye, J., Dobson, S., & McKeever, S. (2011). A review of situation identification techniques in pervasive computing. Pervasive and Mobile Computing, In Press,(0). Elsevier B.V.
Published
2012-07-16
ROLIM, Carlos O.; ROSSETTO, Anubis; LEITHARDT, Valderi R. Q.; GEYER, Cláudio F. R.. Analysis of a Hybrid Neural Network as a Basis for a Situation Prediction Mechanism. In: PROCEEDINGS OF BRAZILIAN SYMPOSIUM ON UBIQUITOUS AND PERVASIVE COMPUTING (SBCUP), 4. , 2012, Curitiba/PR. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2012 . p. 11-20. ISSN 2595-6183.