Analysis of a Hybrid Neural Network as a Basis for a Situation Prediction Mechanism
Abstract
This paper presents the results towards a technique that can be used as an underlying mechanism for situational prediction. We analyzed a hybrid neural network called Multioutput Adaptive Neural Fuzzy Inference System (MANFIS) and its predictive ability was compared with a Multi Layer Perceptron (MLP). The results demonstrate that depending of application the use of neural networks can be considered a good approach for the situational prediction when combined with other techniques.
References
Alves Lino, J., Salem, B., & Rauterberg, M. (2010). Responsive environments: User experiences for ambient intelligence. Journal of Ambient, 2(4), 347–367. IOS Press. DOI: 10.3233/AIS-2010-0080
Anagnostopoulos, T., Anagnostopoulos, C. B., Hadjiefthymiades, S., Kalousis, A., & Kyriakakos, M. (2007). Path Prediction through Data Mining. Artificial Intelligence, 128-135. IEEE.
Anagnostopoulos, T., Anagnostopoulos, C., & Hadjiefthymiades, S. (2009). An Online Adaptive Model for Location Prediction. Autonomics’09 (pp. 64-78).
Anagnostopoulos, T., Anagnostopoulos, C., & Hadjiefthymiades, S. (2011). An adaptive location prediction model based on fuzzy control. Computer Communications, 34(7), 816-834.
Anagnostopoulos, T., Anagnostopoulos, C., Hadjiefthymiades, S., Kyriakakos, M., & Kalousis, A. (2009). Predicting the location of mobile users: a machine learning approach. Proceedings of the 2009 international conference on Pervasive services (pp. 65-72). ACM. DOI: 10.1145/1568199.1568210
Augusto, Juan Carlos, & Shapiro, D. (2007). Notes from editors. Frontiers in Artificial Intelligence and Applications, 164.
Benmiloud, T. (2010). Multioutput adaptive neuro-fuzzy inference system. In 11th WSEAS international conference on neural networks (pp. 94-98). Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS).
Benta, K.-I., Cremene, M., & Todica, V. (2009). Towards an Affective Aware Home. Proceedings of the ICOST (pp. 74-81).
Benta, K.-I., Hoszu, A., Văcariu, L., & Creţ, O. (2009). Agent based smart house platform with affective control. Proceedings of the 2009 Euro American Conference on Telematics and Information Systems New Opportunities to increase Digital Citizenship, 1-7. ACM Press. DOI: 10.1145/1551722.1551740
Benta, K.-iulian, Cremene, M., Hoszu, A., Editors, M., Margaria, T., Padberg, J., & Taentzer, G. (2010). Training the Behaviour Preferences on Context Changes. ECEASST, 28.
Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Comp., 6(2), 161-180.
Buchmayr, M., & Kurschl, W. (2011). A survey on situation-aware ambient intelligence systems. Journal of Ambient Intelligence and Humanized Computing, 2(3), 175-183. DOI: 10.1007/s12652-011-0055-1
Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: applications in society and opportunities for artificial intelligence. Pervasive and Mobile Computing.
Costa, C. A. (2008). Continuum: A Context-aware Service-based Software Infrastructure for Ubiquitous Computing. UFRGS.
Dey, A. K. (2001). Understanding and Using Context. (A. K. Dey, G. Kortüm, D. R. Morse, & A. Schmidt, Eds.)Personal and Ubiquitous Computing, 5(1), 4-7. Springer-Verlag. DOI: 10.1007/s007790170019
Elmahalawy, A. M., Elfishawy, N., & El-dien, M. N. (2010). Anticipation the consumed electrical power in Smart Home using evolutionary algorithms. 2010 International Conference on Multimedia Computing and Information Technology MCIT, 81-84. Ieee. DOI: 10.1109/MCIT.2010.5444847
Endsley, M. R. (2006). Situation Awareness. In G. Salvendy (Ed.), Handbook of Human Factors and Ergonomics (pp. 528-542). John Wiley & Sons Ltd. DOI: 10.1002/0470048204.ch20
Endsley, M. R., & Connors, E. S. (2008). Situation Awareness: State of the Art. Energy, 13-16.
Gellersen, H., Schmidt, A., & Beigl, M. (2002). Multi-Sensor Context-Awareness in Mobile Devices and Smart Artefacts. Mobile Networks and Applications, 7(5), 341-351.
Kluwer Academic Publishers Haykin, S. (2011). Redes Neurais Principios e práticas (2nd ed.).
Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. Ieee Transactions On Systems Man And Cybernetics, 23(3), 665-685. IEEE. DOI: 10.1109/21.256541
Kasteren, T. L. M., Englebienne, G., & Kröse, B. J. a. (2010). An activity monitoring system for elderly care using generative and discriminative models. Personal and Ubiquitous Computing, 14(6), 489-498.
Leithardt, V. R. Q. Geyer, C. F. R., Nunes, D., Silva, S. J.;, Rolim, C. O., Rosseto, A. G. de M., Dantas, M. A. . (2012). Percontrol A Pervasive System for Educational Environments using Wireless Sensor Networks. International Conference on Computing, Networking and Comm. (ICNC 2012).
Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197(4300), 287-289. DOI: 10.1126/science.267326
Marza, V., & Teshnehlab, M. (2009). Estimating Development Time and Effort of Software Projects by using a Neuro_Fuzzy Approach. In K. Jayanthakumaran (Ed.), Advanced Technologies (pp. 395-412).
Ramos, C., Augusto, J. C., & Shapiro, D. (2008). Ambient intelligence: The next step for artificial intelligence. IEEE Intelligent Systems, 23(2), 15–18.
Yamin, A. C. (2004). Arquitetura para um Ambiente de Grade Computacional Direcionada às Aplicações Distribuídas, Móveis e Conscientes de Contexto da Computação Pervasiva. UUFRGS.
Yau, S. S., Huang, D., Gong, H., & Science, C. (2004). Development and Runtime Support for Situation-Aware Application Software in Ubiquitous Computing Environments. Computer.
Yau, S. S., Wang, Y., Karim, F., & Science, C. (2002). Development of Situation-Aware Application Software for Ubiquitous Computing Environments. Computer.
Ye, J., Dobson, S., & McKeever, S. (2011). A review of situation identification techniques in pervasive computing. Pervasive and Mobile Computing, In Press,(0). Elsevier B.V.
