Uma Abordagem para Monitoramento e Inferência de Situação para Cadeiras de Rodas Motorizadas
Resumo
As Tecnologias Assistivas visam ampliar a independência e inclusão social de pessoas com deficiência motora. A Internet das Coisas (IoT) conecta dispositivos físicos utilizando diferentes padrões de rede, inclusive sem-fio, permitindo que cadeiras de rodas, importantes artefatos de tecnologia assistiva, também se beneficiem de uma operação de forma interligada. Neste artigo é discutida a concepção de uma abordagem, denominada SISCMot, que explora conceitos de IoT e Ciência de Contexto para beneficiar toda a cadeia de atores que se relacionam com as cadeiras de rodas motorizadas. As avaliações do SISCMot realizadas com cadeiras motorizadas Freedom se mostraram promissoras, indicando a continuidade da pesquisa.
Referências
Ashraf, T., Islam, N., Costa, S. L., Arefin, M. S., and Azad, A. A. M. (2021). Developing an iot based wheelchair: Biomedical data logging & emergency contingency services. In 2021 IEEE International Conference on Consumer Electronics (ICCE), pages 1–5. IEEE.
Ashton, K. (2009). That ’internet of things’ thing. RFID Journal. Barbosa, J., Tavares, J., Cardoso, I., Alves, B., and Martini, B. (2018). Trailcare: An indoor and outdoor context-aware system to assist wheelchair users. International Journal of Human-Computer Studies, 116:1–14.
Bourgeois-Doyle, R. I. (2004). George J. Klein: The Great Inventor. Biography series. NRC Press. Cao, K., Liu, Y., Meng, G., and Sun, Q. (2020). An overview on edge computing research. IEEE Access, 8:85714–85728.
Cho, S., Han, H., Park, H., Lee, S.-U., Kim, J.-H., Jeon, S. W., Wang, M., Avila, R., Xi, Z., Ko, K., et al. (2023). Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. npj Flexible Electronics, 7(1):8.
Dsouza, D. J., Srivastava, S., Prithika, R., and Sahana Rai, A. (2019). Iot based smart sensing wheelchair to assist in healthcare. Methods, 6(06).
Kanade, P., Prasad, J. P., and Kanade, S. (2021). Iot based smart healthcare wheelchair for independent elderly. European Journal of Electrical Engineering and Computer Science, 5(5):4–9.
Knappmeyer, M., Kiani, S. L., Reetz, E. S., Baker, N., and Tonjes, R. (2013). Survey of context provisioning middleware. IEEE Communications Surveys & Tutorials, 15(3):1492–1519.
Sheikh, S. Y. and Jilani, M. T. (2023). A ubiquitous wheelchair fall detection system using low-cost embedded inertial sensors and unsupervised one-class svm. Journal of Ambient Intelligence and Humanized Computing, 14(1):147–162.
Shukur, H., Zeebaree, S., Zebari, R., Zeebaree, D., Ahmed, O., and Salih, A. (2020). Cloud computing virtualization of resources allocation for distributed systems. Journal of Applied Science and Technology Trends, 1(3):98–105.
Tavares, C., Domingues, M. F., Paixão, T., Alberto, N., Silva, H., and Antunes, P. (2020). Wheelchair pressure ulcer prevention using fbg based sensing devices. Sensors, 20(1).
Tavares, C., Real, D., Domingues, M. d. F., Alberto, N., Silva, H., and Antunes, P. (2022). Sensor cell network for pressure, temperature and position detection on wheelchair users. International Journal of Environmental Research and Public Health, 19(4):2195.
Temdee, P. and Prasad, R. (2018). Context-Aware Communication and Computing: Applications for Smart Environment.
World Health Organization (2022). Global report on health equity for persons with disabilities. page 312.