A Dataflow Approach for Contextual Processing in the Internet of Things

  • Douglas Scheunemann UCPEL
  • Adenauer Yamin UCPEL
  • Renata Reiser UFPEL
  • João Lopes UFRGS
  • Cláudio Geyer UFRGS

Abstract


The objective of this work is the design of an architecture focused on the composition of contextual processing flows to provide situation awareness for IoT applications. This work considers the use of a dataflow programming approach integrated with the EXEHDA middleware. A case study in the health area was carried out to evaluate the architecture.

References

Bellavista, P., Corradi, A., Fanelli, M., and Foschini, L. (2012). A survey of context data distribution for mobile ubiquitous systems. ACM Computing Surveys, 44(4):1–45.

Bibri, S. E. (2015). The Human Face of Ambient Intelligence, volume 9.

Chihani, B., Bertin, E., and Crespi, N. (2014). Programmable context awareness framework. Journal of Systems and Software, 92(1):59–70.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, University of California.

Forkan, A., Khalil, I., and Tari, Z. (2014). CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Future Generation Computer Systems, 35:114–127.

Khodadadi, F., Dastjerdi, A. V., and Buyya, R. (2015). Simurgh: A framework for effective discovery, programming, and integration of services exposed in IoT. Recent Advances in Internet of Things (RIoT), 2015 International Conference on, (April):1–6.

Kwapisz, J. R., Weiss, G. M., and Moore, S. a. (2011). Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter, 12:74.

Lara, O. D. and Labrador, M. a. (2012). A Survey on Human Activity Recognition using Wearable Sensors. IEEE Communications Surveys & Tutorials, pages 1–18.

Lopes, J., Souza, R., Geyer, C., Costa, C., Barbosa, J., and Augustin, I. (2014). A middleware architecture for context-aware adaptation in. Journal of Universal Computer Science, 20(9):1327–1351.

Negrão, C. E. and Barreto, A. C. P. (2010). Cardiologia do Exercício: do Atleta ao Cardiopata. Manole, Barueri, SP - Brazil, 3 edition.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2013). Context Aware Computing for The Internet of Things : A Survey. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, X(X):1–41.

Rabelo, D., Gil, C., and Araújo, S. D. (2006). Reabilitação cardíaca com ênfase no exercício: uma revisão sistemática. Revista Brasileira de Medicina do Esporte, 12(5):279–285.

Shaw, I. and Simões, M. (2007). Controle e Modelagem Fuzzy. 2 edition.

Sobrevilla, P. and Montseny, E. (2003). Fuzzy Sets in Computer Vision : an Overview. Mathw. Soft Computing, 10:71–83.

Sousa, T. B. (2012). Dataflow programming concept, languages and applications. In Doctoral Symposium on Informatics Engineering, number January.

Ye, J., Dobson, S., and McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing, 8(1):36–66.

Yuan, B. and Herbert, J. (2014). Context-aware hybrid reasoning framework for pervasive healthcare. Personal and Ubiquitous Computing, 18(4):865–881.
Published
2017-07-02
SCHEUNEMANN, Douglas; YAMIN, Adenauer; REISER, Renata; LOPES, João; GEYER, Cláudio. A Dataflow Approach for Contextual Processing in the Internet of Things. In: PROCEEDINGS OF BRAZILIAN SYMPOSIUM ON UBIQUITOUS AND PERVASIVE COMPUTING (SBCUP), 9. , 2017, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 968-977. ISSN 2595-6183. DOI: https://doi.org/10.5753/sbcup.2017.3303.