Air-Pure Monitor: A Low-Cost IoT Solution for Healthy Indoor Environments

  • Bruna M. O. Silva UFG
  • Iwens G. S. Junior UFG
  • Renato F. Bulcão-Neto UFG

Abstract


This paper presents Air-Pure Monitor, a low-cost and easily replicable IoT-based system for monitoring Indoor Air Quality (IAQ) in air-conditioned environments. The device is built upon an ESP32 microcontroller integrated with sensors for temperature, humidity, carbon dioxide (CO2), and total volatile organic compounds (TVOCs). Sensor data is transmitted via MQTT to the ThingSpeak platform, where it is processed, stored, and made available for real-time visualization through a Web application. Experiments were conducted in two real-world indoor scenarios, each with distinct occupancy and ventilation conditions. The results demonstrate the system’s responsiveness to variations in air quality parameters and its potential to support preventive environmental management in educational, residential, and corporate settings.

References

(2003). Resolução - re n◦ 9, de 16 de janeiro de 2003. Estabelece padrões referenciais de qualidade do ar interior em ambientes climatizados de uso público e coletivo.

(2018). Lei n◦ 13.589, de 4 de janeiro de 2018. Dispõe sobre a manutenção de sistemas de climatização de ambientes de uso coletivo para garantir a qualidade do ar interior.

Ashton, K. et al. (2009). That ‘internet of things’ thing. RFID journal, 22(7):97–114.

Campos, A. R., Silva, T. F., and Carvalho, L. R. (2023). Arquitetura de monitoramento de qualidade de ar baseada no lorawan e fiware em um campus universitário. In Anais do Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP).

Council, U. G. B. (2014). Leed v4 for building design and construction. USGBC Inc.

da Saúde, M. (2020). Benzeno.

Du, B., Tandoc, M. C., Mack, M. L., and Siegel, J. A. (2020). Indoor co2 concentrations and cognitive function: A critical review. Indoor air.

Fernandes, M., Torres, R., and Almeida, S. (2025). Enviro-iot: Calibrating low-cost environmental sensors in urban settings. arXiv preprint arXiv:2502.07596.

Haghighat, F. and De Bellis, L. (1998). Material emission rates: literature review, and the impact of indoor air temperature and relative humidity. Building and Environment, 33(5):261–277.

Jones, A. P. (1999). Indoor air quality and health. Atmospheric environment, 33(28):4535–4564.

Kim, S. S., Kang, D. H., Choi, D. H., Yeo, M. S., Kim, K. W., et al. (2012). Voc emission from building materials in residential buildings with radiant floor heating systems. Aerosol and Air Quality Research, 12(6):1398–1408.

Leite, J., Oliveira, P., and Campos, C. (2021). Airspec: An iot-empowered air quality monitoring system integrated with a machine learning framework to detect and predict defined air quality parameters. arXiv preprint arXiv:2111.14125.

Mølhave, L. (1991). Volatile organic compounds, indoor air quality and health. Indoor Air, 1(4):357–376.

Mølhave, L., Clausen, G., Berglund, B., De Ceaurriz, J., Kettrup, A., Lindvall, T., Maroni, M., Pickering, A., Risse, U., Rothweiler, H., et al. (1997). Total volatile organic compounds (tvoc) in indoor air quality investigations. Indoor Air, 7(4):225–240.

Nag, P. K. (2019). Sick building syndrome and other building-related illnesses. In Office Buildings, pages 53–103. Springer.

Pereira, D. and Moreira, T. (2023). A global multi-unit calibration as a method for large scale iot particulate matter monitoring systems deployments. arXiv preprint arXiv:2310.18118.

Persily, A. K. (2015). Indoor carbon dioxide concentrations in ventilation and indoor air quality standards. In 36th AIVC Conference Effective Ventilation in High Performance Buildings, pages 810–819.

Schirmer, W. N., Szymanski, M. S. E., and Gauer, M. A. (2009). Qualidade do ar interno em ambientes climatizados–verificação dos parametros físicos e concentração de dióxido de carbono em agência bancária. Tecno-Lógica, 13(1):41–45.

Silva, A., Rocha, F., and Gomes, L. (2021). pmsensing: A participatory sensing network for predictive monitoring of particulate matter. arXiv preprint arXiv:2111.11441.

Silva, L. M., Almeida, J. R., and Souza, P. F. (2024). Síndrome do edifício doente para trabalhadores de saúde: uma matriz teórica fundamentada nos dados. Revista Contribuciones a las Ciencias Sociales, 17(1):1–15. Acesso em: 21 mar. 2025.

U.S. Environmental Protection Agency (2024). Indoor air quality. Acesso em: 21 mar. 2025.

Vehviläinen, T., Lindholm, H., Rintamäki, H., Pääkkönen, R., Hirvonen, A., Niemi, O., and Vinha, J. (2016). High indoor co2 concentrations in an office environment increases the transcutaneous co2 level and sleepiness during cognitive work. Journal of occupational and environmental hygiene, 13(1):19–29.

Wolkoff, P. (2018). Indoor air humidity, air quality, and health–an overview. International journal of hygiene and environmental health, 221(3):376–390.

Wolkoff, P. and Kjærgaard, S. K. (2007). The dichotomy of relative humidity on indoor air quality. Environment international, 33(6):850–857.

World Health Organization (2023). Ambient (outdoor) air pollution. Acesso em: 21 mar. 2025.

Zhang, L. (2018). Formaldehyde: Exposure, Toxicity and Health Effects, volume 37. Royal Society of Chemistry.
Published
2025-07-20
SILVA, Bruna M. O.; S. JUNIOR, Iwens G.; BULCÃO-NETO, Renato F.. Air-Pure Monitor: A Low-Cost IoT Solution for Healthy Indoor Environments. In: PROCEEDINGS OF BRAZILIAN SYMPOSIUM ON UBIQUITOUS AND PERVASIVE COMPUTING (SBCUP), 17. , 2025, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 71-80. ISSN 2595-6183. DOI: https://doi.org/10.5753/sbcup.2025.8350.