EchoLogger: embedded system for calculating acoustic richness index in non-invasive environmental monitoring

  • Pedro Lucas Bezerra Mendes UFAM
  • Rodolfo Stoll UNRC
  • Juan G. Colonna UFAM

Abstract


This article presents the EchoLogger, a low-cost embedded system for environmental bioacoustic monitoring. Based on the ESP32, the device captures and processes audio in real time, calculating the Acoustic Richness Index (AR) to estimate sound diversity. The methodology includes a comparison of EchoLogger’s calculations with the scikit-maad library and a field test to assess the feasibility of embedded processing. The results indicate high accuracy in the median and entropy calculations, with an MAE of 0.0429 for the median and 0.0776 for the entropy, demonstrating that real-time processing does not compromise data quality. The study confirms the efficiency and accessibility of EchoLogger for environmental monitoring, highlighting its potential in biodiversity and conservation.

References

Beason, R. D., Riesch, R., and Koricheva, J. (2019). Aurita: an affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics, 28(4):381–396.

Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAIWS’94, page 359–370. AAAI Press.

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon, J., Zapata, J., and Serra, X. (2013). Essentia: an open-source library for sound and music analysis. In Proceedings of the 21st ACM international conference on Multimedia, pages 855–858.

Bradfer-Lawrence, T., Duthie, B., Abrahams, C., Adam, M., Barnett, R. J., Beeston, A., Darby, J., Dell, B., Gardner, N., Gasc, A., Heath, B., Howells, N., Janson, M., Kyoseva, M.-V., Luypaert, T., Metcalf, O. C., Nousek-McGregor, A. E., Poznansky, F., Ross, S. R. P.-J., Sethi, S., Smyth, S., Waddell, E., and Froidevaux, J. S. P. (2024). The acoustic index user’s guide: A practical manual for defining, generating and understanding current and future acoustic indices. Methods in Ecology and Evolution.

Buxton, R. T., McKenna, M. F., Clapp, M., Meyer, E., Stabenau, E., Angeloni, L. M., Crooks, K., and Wittemyer, G. (2018). Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity. Conservation Biology, 32(5):1174–1184.

Colonna, J. G., Carvalho, J. R. H., and Rosso, O. A. (2020). Estimating ecoacoustic activity in the amazon rainforest through information theory quantifiers. PLOS ONE, 15(7).

Depraetere, M., Pavoine, S., Jiguet, F., Gasc, A., Duvail, S., and Sueur, J. (2012). Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 13(1):46–54.

Farina, A. (2018). Perspectives in ecoacoustics: A contribution to defining a discipline. Journal of Ecoacoustics, 2:TRZD5I.

Hill, A. P., Prince, P., Piña Covarrubias, E., Doncaster, C. P., Snaddon, J. L., and Rogers, A. (2018). Audiomoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9(5):1199–1211.

Kadish, D. and Stoy, K. (2022). Bioacoustic index tool: long-term biodiversity monitoring using on-sensor acoustic index calculations. Bioacoustics, 31(3):348–378.

Kaggle, Xeno-canto, and Contributors, V. (2022). Birdclef 2022 - bird species recognition in soundscape recordings. Kaggle Competition Dataset.

Mennill, D. J. (2024). Field tests of small autonomous recording units: an evaluation of in-person versus automated point counts and a comparison of recording quality. Bioacoustics, 33(2):157–177.

Towsey, M., Wimmer, J., Williamson, I., and Roe, P. (2014). The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21:110–119. Ecological Acoustics.

Ulloa, J. S., Haupert, S., Latorre, J. F., Aubin, T., and Sueur, J. (2021). scikit-maad: An open-source and modular toolbox for quantitative soundscape analysis in python. Methods in Ecology and Evolution, 12(12):2334–2340.
Published
2025-07-20
MENDES, Pedro Lucas Bezerra; STOLL, Rodolfo; COLONNA, Juan G.. EchoLogger: embedded system for calculating acoustic richness index in non-invasive environmental monitoring. In: PROCEEDINGS OF BRAZILIAN SYMPOSIUM ON UBIQUITOUS AND PERVASIVE COMPUTING (SBCUP), 17. , 2025, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 151-160. ISSN 2595-6183. DOI: https://doi.org/10.5753/sbcup.2025.9242.