Multi-Microgrid: Advancing Smart Grids through Hybrid IoT Architecture for Efficient Energy Management

  • Artur F. da S. Veloso UFPI
  • Jocines D. F. da Silveira UFPI
  • Pedro F. F. Abreu UFPI
  • Thiago A. R. da Silva UFPI / IFMA
  • Geraldo A. S. Neto UFPI
  • Ricardo A. L. Rabêlo UFPI
  • José V. R. Júnior UFPI


In the current landscape, Smart Grids (SGs) grapple with critical challenges, notably their reliance on centralized networks and the absence of microgrid system integration. The concept of a multi-microgrid solution emerges as an approach that interconnects and orchestrates multiple microgrids, enhancing the electrical system’s resilience, scalability, and capacity to integrate distributed renewable energy sources, enabling Demand-Side Management (DSM) for a more efficient and secure network. This study introduces a novel hybrid Internet of Things (IoT) architecture employing LoRaWAN and LoRaMESH to address these challenges. This approach, operating within a decentralized multi-microgrid framework, reduces message transmission time by over 50%, demonstrating its efficacy and relevance while streamlining communication between Smart Meters (SMs) and the Electric Power Company (EPC), ultimately fostering the adoption of DSM services by consumers and representing a transformative solution for the future of Sgs.
Palavras-chave: smart grid, multi-microgrid, internet of things, demand side management, Lora, LoRaWAN, LoRaMESH


A. F. d. S. Veloso, J. V. R. Júnior, R. d. A. L. Rabelo, and J. D.-f. Silveira, “Hydsmaas: A hybrid communication infrastructure with lorawan and loramesh for the demand side management as a service,” Future Internet, vol. 13, no. 11, p. 271, 2021.

C. Lamnatou, D. Chemisana, and C. Cristofari, “Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment,” Renewable Energy, vol. 185, pp. 1376–1391, 2022.

Y. Li and J. Yan, “Cybersecurity of smart inverters in the smart grid: A survey,” IEEE Transactions on Power Electronics, 2022.

O. A. Omitaomu and H. Niu, “Artificial intelligence techniques in smart grid: A survey,” Smart Cities, vol. 4, no. 2, pp. 548–568, 2021.

J. J. Moreno Escobar, O. Morales Matamoros, R. Tejeida Padilla, I. Lina Reyes, and H. Quintana Espinosa, “A comprehensive review on smart grids: Challenges and opportunities,” Sensors, vol. 21, no. 21, p. 6978, 2021.

D. Wu, A. S. Bogdan, and J. Liebeherr, “Large-scale environmental sensing of remote areas on a budget,” IEEE Internet of Things Magazine, vol. 6, no. 2, pp. 130–136, 2023.

D. Kanakadhurga and N. Prabaharan, “Demand side management in microgrid: A critical review of key issues and recent trends,” Renewable and Sustainable Energy Reviews, vol. 156, p. 111915, 2022.

L. Lv, Z. Wu, L. Zhang, B. B. Gupta, and Z. Tian, “An edge-ai based forecasting approach for improving smart microgrid efficiency,” IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 7946–7954, 2022.

S. U. Khan, N. Khan, F. U. M. Ullah, M. J. Kim, M. Y. Lee, and S. W. Baik, “Towards intelligent building energy management: Ai-based framework for power consumption and generation forecasting,” Energy and Buildings, vol. 279, p. 112705, 2023.

L. Ali, S. Muyeen, H. Bizhani, and M. G. Simoes, “Economic planning and comparative analysis of market-driven multi-microgrid system for peer-to-peer energy trading,” IEEE Transactions on Industry Applications, vol. 58, no. 3, pp. 4025–4036, 2022.

D. Saha, N. Bazmohammadi, J. C. Vasquez, and J. M. Guerrero, “Multiple microgrids: A review of architectures and operation and control strategies,” Energies, vol. 16, no. 2, p. 600, 2023.
VELOSO, Artur F. da S.; SILVEIRA, Jocines D. F. da; ABREU, Pedro F. F.; SILVA, Thiago A. R. da; S. NETO, Geraldo A.; RABÊLO, Ricardo A. L.; R. JÚNIOR, José V.. Multi-Microgrid: Advancing Smart Grids through Hybrid IoT Architecture for Efficient Energy Management. In: TRABALHOS EM ANDAMENTO - SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SISTEMAS COMPUTACIONAIS (SBESC), 13. , 2023, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 71-74. ISSN 2763-9002. DOI: