Avaliando o Impacto da Comunicação na Cobertura de Área com um Conjunto Dinâmico de Veículos Aéreos Não Tripulados

  • Antonio Pedro Santana Ferreira UFBA
  • Alirio Santos de Sá UFBA

Resumo


The multi-UAV area coverage problem concerns the coordinated action of UAVs to cover an area of interest, for example, mapping or collecting information from the entire area. In critical applications such as search and rescue, disaster mapping, and others, it is essential that the system allows for the inclusion of new UAVs, tolerates the failure or replacement of existing UAVs, and prevents potential communication failures from jeopardizing the mission. Therefore, it is crucial to develop area coverage solutions with dynamic sets of coordinated UAVs in unreliable communication environments to meet these types of applications. However, existing solutions that work with sets of UAVs either consider static sets or do not consider the possibility of communication failures. Therefore, developing solutions for critical area coverage missions remains a challenge. Consequently, in this paper, we address this problem by investigating the impact of communication on area coverage with a dynamic set of UAVs. The experimental evaluation considered area coverage applications based on static and dynamic sets of UAVs communicating over reliable and unreliable communication channels and equipped with underlying communication systems with different message detection and recovery capabilities. Performance was analyzed considering metrics related to mission execution speed and the ability to avoid redundant movement. The results show significant impacts on area coverage performance when we adopt message detection and recovery mechanisms. Furthermore, the analysis of the results shows that the appropriate combination of communication fault tolerance mechanisms at the application and communication system levels can enable complete area coverage with intermediate impacts on performance.
Palavras-chave: UAV, Sensor networks, Area Coverage, Distributed applications

Referências

J. "George, S. P. B., and J. B. Sousa, “Search strategies for multiple uav search and destroy missions,” Journal of Intelligent & Robotic Systems, vol. 61, no. 1, pp. 355–367, Jan 2011. [Online]. DOI: 10.1007/s10846-010-9486-8

N. Nigam, “The multiple unmanned air vehicle persistent surveillance problem: A review,” Machines, vol. 2, no. 1, pp. 13–72, 2014. [Online]. Available: [link]

G. B. P. Ribeiro, G. M. Simões, F. Assis, S. Gorender, and A. S. de Sá, “Simple area coverage by a dynamic set of unmanned aerial vehicles,” in 2020 X Brazilian Symposium on Computing Systems Engineering (SBESC), 2020, pp. 1–8. [Online]. DOI: 10.1109/SBESC51047.2020.9277866

Y. Chen, H. Zhang, and M. Xu, “The coverage problem in uav network: A survey,” in Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 2014, pp. 1–5. [Online]. DOI: 10.1109/ICCCNT.2014.6963085

S. Chen, C. Li, and S. Zhuo, “A distributed coverage algorithm for multi-uav with average voronoi partition,” in 2017 17th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2017, pp. 1083–1086. [Online]. DOI: 10.23919/ICCAS.2017.8204377

T. M. Cabreira and P. R. Ferreira, “Terrain coverage with uavs: Realtime search and geometric approaches applied to an abstract model of random events,” in 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), 2016, pp. 151–156. [Online]. DOI: 10.1109/LARS-SBR.2016.32

M. F. da Silva and A. S. de Sá, “THexCAD: Uma plataforma de prototipagem e simulação de cobertura para Área com múltiplos drones,” in Anais do Salão de Ferramentas do XLIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2025). Porto Alegre: SBC, 2025, pp. 53–63. [Online]. DOI: 10.5753/sbrc_estendido.2025.7062

S. Javed, A. Hassan, R. Ahmad, W. Ahmed, R. Ahmed, A. Saadat, and M. Guizani, “State-of-the-art and future research challenges in uav swarms,” IEEE Internet of Things Journal, vol. 11, no. 11, pp. 19 023–19 045, 2024. [Online]. DOI: 10.1109/JIOT.2024.3364230

Y. Zhou, B. Rao, and W. Wang, “Uav swarm intelligence: Recent advances and future trends,” IEEE Access, vol. 8, pp. 183 856–183 878, 2020. [Online]. DOI: 10.1109/ACCESS.2020.3028865

G. B. P. Ribeiro, “Ogum: um framework para cobertura de área utilizando um conjunto dinâmico de VANTs,” Dissertação de Mestrado, Programa de Pós-Graduação em Ciência da Computação da Universidade Federal da Bahia, Salvador, Bahia, Brasil, Jun 2021. [Online]. Available: [link]

L. Lucchesi, M. Endler, and B. J. O. de Souza, “Dynamic effects of communication delay, failure rates, and speed on UAV swarm formation,” in Anais do XL II Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. SBC, 2024. [Online]. DOI: 10.5753/sbrc.2024.1445

I. Chandran and K. Vipin, “Network analysis of decentralized fault-tolerant UAV swarm coordination in critical missions,” Drone Systems and Applications, vol. 12, pp. 1–15, 2024. [Online]. DOI: 10.1139/dsa-2023-0101

O. S. R. Foundation, “ROS:robot operating system,” 2022, acesso em: 24 jan. 2025. [Online]. Available: [link]

Gazebo, “Open source robotics foundation,” 2022, acessado em 10 abr. 2022. [Online]. Available: [link]

G. M. Simões and A. S. de Sá, “Um framework para simulação de sistemas robóticos baseados em múltiplos veículos aéreos não tripulados,” in Anais Estendidos do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Porto Alegre, RS, Brasil: SBC, 2020, pp. 217–224. [Online]. DOI: 10.5753/sbrc_estendido.2020.12422

H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellular decomposition,” in Field and Service Robotics, A. Zelinsky, Ed. London: Springer, 1998, pp. 203–209. [Online]. DOI: 10.1007/978-1-4471-1273-0_32

R. Jain, The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling., ser. Wiley professional computing. Wiley, 1991.

I. Bekmezci, O. Sahingoz, and a. Temel, “Flying ad-hoc networks (fanets): a survey,” Ad Hoc Networks, vol. 11, pp. 1254–1270, 05 2013. [Online]. DOI: 10.1016/j.adhoc.2012.12.004

Q. Yu, L. Cheng, X. Wang, P. Bao, and Q. Zhu, “Research on multiple unmanned aerial vehicles area coverage for gas distribution mapping,” in 2018 10th International Conference on Modelling, Identification and Control (ICMIC), 2018, pp. 1–5. [Online]. DOI: 10.1109/ICMIC.2018.8529963

A. Maarouf, W. Ko, and A. S. Nouh, “A recursive optimization algorithm for a surveillance of a convex area,” in 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019, pp. 1–4. [Online]. DOI: 10.1109/ICMSAO.2019.8880353

S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial swarm robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855, 2018. [Online]. DOI: 10.1109/TRO.2018.2857475

M. Rosalie, M. R. Brust, G. Danoy, S. Chaumette, and P. Bouvry, “Coverage optimization with connectivity preservation for uav swarms applying chaotic dynamics,” in 2017 IEEE International Conference on Autonomic Computing (ICAC), 2017, pp. 113–118. [Online]. DOI: 10.1109/ICAC.2017.26
Publicado
24/11/2025
FERREIRA, Antonio Pedro Santana; SÁ, Alirio Santos de. Avaliando o Impacto da Comunicação na Cobertura de Área com um Conjunto Dinâmico de Veículos Aéreos Não Tripulados. In: ARTIGOS COMPLETOS - SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SISTEMAS COMPUTACIONAIS (SBESC), 15. , 2025, Campinas/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 25-30. ISSN 2763-9002. DOI: https://doi.org/10.5753/sbesc_estendido.2025.15687.