Understanding players to enhance their fun: how to extract player data and motivation factors for procedural content generation

Resumo


This paper uses results from recent literature on player data collection and Human-Computer Interaction (HCI) fundamentals to classify the data collected by gaming systems to identify different types of players and their motivators. Our study proposes to address the lack of standards and ambiguous identification of data and collection techniques, which hinders progress in the Procedural Content Generation field. Our proposed classification may help researchers and game developers build metrics to evaluate users' motivators and player types, fostering the chance to generate game content to optimize performance, fun, and user satisfaction when playing.

Palavras-chave: Player Modeling, Player Behavior, User Profiling, Digital Games, Procedural Content Generation

Referências

Abeele, V. V., Spiel, K., Nacke, L., Johnson, D., e Gerling, K. (2020). Development and validation of the player experience inventory: A scale to measure player experiences at the level of functional and psychosocial consequences. International Journal of Human-Computer Studies, 135:102370. DOI: 10.1016/j.ijhcs.2019.102370

Azadvar, A. e Canossa, A. (2018). Upeq: Ubisoft perceived experience questionnaire: A self-determination evaluation tool for video games. In Proceedings of the 13th International Conference on the Foundations of Digital Games, FDG ’18, pages 5:1– 5:7, New York, NY, USA. ACM. DOI: 10.1145/3235765.3235780

Bicho, F. e Martinho, C. (2018). Multi-dimensional player skill progression modelling for procedural content generation. In Proceedings of the 13th International Conference on the Foundations of Digital Games, FDG ’18, pages 1:1–1:10, New York, NY, USA. ACM. DOI: 10.1145/3235765.3235774

Brockmyer, J. H., Fox, C. M., Curtiss, K. A., McBroom, E., Burkhart, K. M., e Pidruzny, J. N. (2009). The development of the game engagement questionnaire: A measure of engagement in video game-playing. Journal of Experimental Social Psychology, 45(4):624–634. DOI: 10.1016/j.jesp.2009.02.016

de Lima, E. S., Feijó, B., e Furtado, A. L. (2021). Adaptive branching quests based on automated planning and story arcs. In 2021 20th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 9–18. DOI: 10.1109/SBGames54170.2021.00012

Ferreira, L. N. e Toledo, C. F. M. (2018). Tanager: A generator of feasible and engaging levels for angry birds. IEEE Transactions on Games, 10(3):304–316. DOI: 10.1109/TCIAIG.2017.2766218

Heijne, N. e Bakkes, S. (2017). Procedural zelda: a pcg environment for player experience research. In Proceedings of the 12th International Conference on the Foundations of Digital Games, FDG ’17, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3102071.3102091

Hojatoleslami, M. R., Zamanifar, K., e Zojaji, Z. (2024). Gfgda: general framework for generating dungeons with atmosphere. Multimedia Tools and Applications. DOI: 10.1007/s11042-024-18833-5

Jacko, J. A. (2012). Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications, Third Edition. CRC Press, Inc., Boca Raton, FL, USA, 3rd edition.

Lora, D., Sanchez-Ruiz-Granados, A. A., González-Calero, P. A., e Gómez-Martín, M. A. (2016). Dynamic difficulty adjustment in tetris. In FLAIRS Conference. DOI: 10.1007/978-3-030-50353-61

Loria, E. e Marconi, A. (2018). Player types and player behaviors: Analyzing correlations in an on-the-field gamified system. In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, CHI PLAY 2018, Melbourne, VIC, Australia, October 28-31, 2018, pages 531–538. DOI: 10.1145/3270316.3271526

Melhart, D., Azadvar, A., Canossa, A., Liapis, A., e Yannakakis, G. N. (2019). Your gameplay says it all: Modelling motivation in tom clancy’s the division. CoRR, abs/1902.00040.

Pereira, L. T., de Souza Prado, P. V., Lopes, R. M., e Toledo, C. F. M. (2021). Procedural generation of dungeons’ maps and locked-door missions through an evolutionary algorithm validated with players. Expert Systems with Applications, 180:115009. DOI: 10.1016/j.eswa.2021.115009

Pereira, L. T., Viana, B. M. F., e Toledo, C. F. M. (2024). A system for orchestrating multiple procedurally generated content for different player profiles. IEEE Transactions on Games, 16(1):64–74. DOI: 10.1109/TG.2022.3213781

Poels, K., de Kort, Y., e IJsselsteijn, W. (2007). D3.3 : Game Experience Questionnaire: development of a self-report measure to assess the psychological impact of digital games. Technische Universiteit Eindhoven. [link]

Rivera-Villicana, J., Zambetta, F., Harland, J., e Berry, M. (2018). Informing a bdi player model for an interactive narrative. In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’18, pages 417–428, New York, NY, USA. ACM. DOI: 10.1145/3242671.3242700

Ryan, R. M., Rigby, C. S., e Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30(4):344–360. DOI: 10.1007/s11031-006-9051-8

Vahlo, J., Kaakinen, J., Holm, S., e Koponen, A. (2017). Digital game dynamics preferences and player types: Preferences in game dynamics. Journal of ComputerMediated Communication. DOI: 10.1111/jcc4.12181
Publicado
30/09/2024
PEREIRA, Leonardo Tórtoro; RODRIGUES, Kamila Rios da Hora; TOLEDO, Claudio Fabiano Motta; TEOI, T. Yuji. Understanding players to enhance their fun: how to extract player data and motivation factors for procedural content generation. In: TRILHA DE COMPUTAÇÃO – ARTIGOS CURTOS - SIMPÓSIO BRASILEIRO DE JOGOS E ENTRETENIMENTO DIGITAL (SBGAMES) , 2024 Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 37-42. DOI: https://doi.org/10.5753/sbgames_estendido.2024.241181.