Personalized Inclusion with GenAI: An Adaptive Strategy to Support Students with ASD in Higher Education
Resumo
Inclusion in abstract, cognitively demanding courses is difficult. This study presents an adaptive strategy that merges Universal Design for Learning (UDL) and Generative AI to tailor propositional-logic activities for a student with Autism Spectrum Disorder (ASD). Across four formative, reflective cycles, existing tasks were progressively reshaped; evidence came from observations, journals, and rubrics. The ASD learner showed sustained gains in engagement, conceptual grasp, and autonomy, indicating the value of the approach. The results suggest that educator-mediated GenAI, aligned with UDL, can foster more responsive and inclusive learning in higher education.
Referências
Almassaad, A., Alajlan, H., and Alebaikan, R. (2024). Student perceptions of generative artificial intelligence: Investigating utilization, benefits, and challenges in higher education. Systems, 12(10):385.
Altes, T. K., Willemse, M., Goei, S. L., and Ehren, M. (2024). Higher education teachers’ understandings of and challenges for inclusion and inclusive learning environments: A systematic literature review. Educational Research Review, 43:100605.
Alves, A. G., Hostins, R. C. L., and Oliveira, N. A. D. (2024). Becca: Um aplicativo para inclusão de acadêmicos com autismo no ensino superior. REPPE: Revista do Programa de Pós-Graduação em Ensino, 8(2):2399–2412. Edição Especial: III Congresso Internacional de Ensino (CONIEN).
Amaral, L. W. G. D., Cordeiro, J. J. R., and Avelino, G. A. (2024). Ia generativa na educação: Personalizando histórias para facilitar o aprendizado de leitura em crianças. In Anais do XXXV Simpósio Brasileiro de Informática na Educação (SBIE), pages 1877–1889.
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., and Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman, New York.
Araújo, D. K. (2024). Reflexões pedagógicas voltadas aos estudantes com transtorno do espectro autista na universidade do estado de mato grosso. Eventos Pedagógicos, 15(3):1040–1048.
Bajaña, C. C., Bajaña, G. R., and Cobas, R. G. (2024). El razonamiento lógico matemático en estudiantes con trastornos del espectro autista. Revista Conrado, 20(99):194–201.
Bandura, A. (1997). Self-Efficacy: The Exercise of Control. W. H. Freeman, New York.
Camalionte, J., Kondo, J., and Rocha, R. (2021). Estudantes do ensino superior com transtorno do espectro autista: Uma revisão integrativa da literatura brasileira. Revista Brasileira de Educação Especial, 27(4):679–698.
CAST (2024). Universal design for learning guidelines version 3.0. [link]. Center for Applied Special Technology (CAST), Wakefield, MA.
Chan, C. K. Y. and Hu, W. (2023). Students’ voices on generative ai: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1):43.
Cunha, M. and Carvalho, L. (2024). Abc autismo frutas: Um aplicativo para crianças com autismo construído com base nas premissas do design centrado no usuário e do ensino estruturado. In Anais do XXXV Simpósio Brasileiro de Informática na Educação, pages 937–950, Porto Alegre, RS, Brasil. SBC.
Elkins, S., Kochmar, E., Cheung, J. C. K., and Serban, I. (2024). How teachers can use large language models and bloom’s taxonomy to create educational quizzes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 23100–23108.
Fredricks, J. A., Blumenfeld, P. C., and Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1):59–109.
Guo, S., Latif, E., Zhou, Y., Huang, X., and Zhai, X. (2024). Using generative ai and multi-agents to provide automatic feedback. arXiv preprint arXiv:2411.07407.
Hehir, T., Schifter, L. A., Grindal, T., Ng, M., and Eidelman, H. (2016). A summary of the evidence on inclusive education. Technical report, Abt Associates, Cambridge, MA. Technical Report.
Holmes, W., Bialik, M., and Fadel, C. (2022). Artificial intelligence in education: Promises and implications for teaching and learning. OECD Education Working Papers, 258.
Imran, M. and Almusharraf, N. (2023). Analyzing the role of chatgpt as a writing assistant at higher education level: A systematic review of the literature. Contemporary Educational Technology, 15(4):ep464.
Israel, M., Chung, M. Y., Wherfel, Q. M., and Shehab, S. (2020). A descriptive analysis of academic engagement and collaboration of students with autism during elementary computer science. Computer Science Education.
Luckin, R. (2018). Towards Artificial Intelligence-Based Assessment Systems. UCL Institute of Education, London.
Malpartida, K. F. and Rodrigues, K. (2024). Building games to exercise computational thinking in children on the autism spectrum through pre-defined templates and end-user development concepts. In Anais do XXXV Simpósio Brasileiro de Informática na Educação, pages 3106–3116, Porto Alegre, RS, Brasil. SBC.
Melnyk, B. M. and Morrison-Beedy, D. (2012). Intervention Research: Designing, Conducting, Analyzing, and Funding. Springer Publishing Company, New York. First Place AJN Book of the Year Award Winner in Nursing Research.
Ministério da Educação (2025). Crescem matrículas de alunos com transtorno do espectro autista. [link]. Notícia publicada em 22 abr. 2025. Acesso em: 27 maio 2025.
Moriña, A. (2017). Inclusive education in higher education: challenges and opportunities. European Journal of Special Needs Education, 32(1):3–17.
Mourão, A., Ribeiro, D., Junior, G. S., Jardim, H., and Monteiro, P. (2024). Meitea: Modelo educacional inclusivo desenvolvido para orientar e recomendar estratégias educacionais e adaptações para estudantes com tea no ensino superior. In Anais do III Workshop de Pensamento Computacional e Inclusão, pages 106–117, Rio de Janeiro, RJ, Brasil. SBC.
Pereira, L. and Barwaldt, R. (2022). Elaboração de atividades gamificadas para estudantes com tea: um estudo utilizando pensamento geométrico. In Anais do XXXIII Simpósio Brasileiro de Informática na Educação, pages 390–402, Porto Alegre, RS, Brasil. SBC.
Pires, S., Silva, C., Fernandes, B., Souza, F., Leal, S., Cavalcance, T., Santos, W., and Araújo, R. (2023). Jogos sérios como subsídio tecnológico na educação de crianças com transtorno do espectro autista. In Anais do XXXIV Simpósio Brasileiro de Informática na Educação, pages 656–669, Porto Alegre, RS, Brasil. SBC.
Rashid, M. and Saqr, M. (2024). Reflective teaching practices and inclusive learning environments. Education and Information Technologies, 29(3):2435–2456.
Sampaio, L. and Pereira, C. (2022). Jogo digital educativo para auxílio a crianças com autismo. In Anais do XXXIII Simpósio Brasileiro de Informática na Educação, pages 597–608, Porto Alegre, RS, Brasil. SBC.
Santos, M. B. and Lima, S. R. P. (2022). Gamificação e tecnologias assistivas: Um estudo de caso com estudantes com transtorno do espectro autista. In Anais do Simpósio Brasileiro de Informática na Educação (SBIE), page 19805, Campo Grande, MS, Brasil. Sociedade Brasileira de Computação.
Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic Books, New York, 1st edition.
Shah, S. M., Elliott, C., and Nedungadi, P. (2024). Square pegs and round holes: Pedagogy for autistic students in computing education. IEEE Transactions on Education, 67(6):919–931.
Silva, A., Santos, P., and Cunha, M. (2024a). Letramundo: Um jogo sério para alfabetização de crianças com transtorno do espectro autista (tea) em ambiente escolar. In Anais do XXXV Simpósio Brasileiro de Informática na Educação, pages 2747–2756, Porto Alegre, RS, Brasil. SBC.
Silva, T., Vidotto, K., Tarouco, L., and Silva, P. (2024b). Potencialidades do uso de inteligência artificial generativa como apoio ao ensino de programação. In Anais do XXXV Simpósio Brasileiro de Informática na Educação, pages 1942–1956, Porto Alegre, RS, Brasil. SBC.
Stuurman, S., Passier, H. J. M., Geven, F., and Barendsen, E. (2019). Autism: Implications for inclusive education with respect to software engineering. In Proceedings of the 2019 Computer Science Education Research Conference (CSERC), pages 1–11.
Sun, D., Boudouaia, A., Zhu, C., and Li, Y. (2024). Would chatgpt-facilitated programming mode impact college students’ programming behaviors, performances, and perceptions? an empirical study. International Journal of Educational Technology in Higher Education, 21(1):14.
Svendby, R. B. (2024). Inclusive teaching in higher education: Challenges of diversity in learning situations from the lecturer perspective. Social Sciences, 13(3):140.
Tarconish, D., Grabowski, D., May, C., McNulty, S., and Spence, B. (2024). Universal design for instruction & learning in higher education. Journal of Postsecondary Education and Disability, 37(1):35–54.
UNESCO (2021). Recommendation on the ethics of artificial intelligence. [link]. Accessed: 2025-05-25.
Zhang, Y. (2024). Incorporating chatgpt as an automated written corrective feedback tool into l2 writing class. Journal of Language Teaching, 4(2):24.
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 41(2):64–70.
