Flexible Assessment in Digital Teaching-Learning Processes: Case Studies via Computational Thinking

  • Amanda Argou Universidade Federal de Pelotas (UFPel)
  • Catherine Gayer Universidade Federal de Pelotas (UFPel)
  • Simone Cavalheiro Universidade Federal de Pelotas (UFPel)
  • Luciana Foss Universidade Federal de Pelotas (UFPel)
  • André Du Bois Universidade Federal de Pelotas (UFPel)
  • Renata Reiser Universidade Federal de Pelotas (UFPel)

Resumo


This proposal presents three applications: (i) the F-ATL methodology expressing the uncertainty inherent in assessment of teaching-learning (ATL) processes; (ii) two case studies validating the F-ATL methodology via activities of Computational Thinking (CT) applying fuzzy logic and the interval-valued fuzzy logic; (iii) the impact analysis related to the validation of both case studies. This proposal also focuses on modeling uncertainty in the assessment of digital educational resources and technologies in ATL processes, regarding the development of relevant thinking skills via CT. The case studies classify the students' marks in elementary school, evaluating their performance and considering CT skills as algorithm, generalization, abstraction, decomposition, and evaluation.

Palavras-chave: Flexible Assessment, Computational Thinking, Fuzzy Logic, Digital Teaching-Learning

Referências

Avila, C., Cavalheiro, S., Bordini, A., Marques, M., Cardozo, M., and Feijo, G. (2017). Metodologias de avaliação do pensamento computacional: uma revisão sistemática. In SBIE 2017.

Cabrera, N. V. (2014). Aplicação da extensão de Zadeh para conjuntos fuzzy tipo 2 intervalar. Dissertação (Mestrado em Ciências Exatas e da Terra), página 86.

Castillo, O. and Melin, P. (2008). Type-2 Fuzzy Logic: Theory and Applications, volume 223 of Studies in Fuzziness and Soft Computing. Springer.

Castro, J. R., Castillo, O., and Melin, P. (2007). An interval type-2 fuzzy logic toolbox for control applications. In FUZZ-IEEE, páginas 1–6. IEEE.

Gehrke, M., Walker, C., and Walker, E. (1996). Some comments on interval valued fuzzy sets. International Journal of Intelligent Systems, 11(10):751–759.

ISTE (2014). Computational thinking in k–12 education leadership toolkit. Disponível por WWW em [link].

Karnik, N., Mendel, J., and Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7:643–658.

Liang, Q. and Mendel, J.M. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy systems, 8:535–550.

Mendel, J. M. (2001). Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall.

Wing, J. (2006). Computational thinking. Commun. of the ACM, 49(3):33–35.

Yager, R. R. (2004). On some new classes of implication operators and their role in approximate reasoning. Inf. Sci. Inf. Comput. Sci., 167(1-4):193–216.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, (8):338–358.

Zadeh, L. A. (2008). Is there a need for fuzzy logic? Inf. Sciences, 178(13):2751–2779.
Publicado
11/11/2019
ARGOU, Amanda; GAYER, Catherine; CAVALHEIRO, Simone; FOSS, Luciana; DU BOIS, André; REISER, Renata. Flexible Assessment in Digital Teaching-Learning Processes: Case Studies via Computational Thinking. In: SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE), 30. , 2019, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 429-438. DOI: https://doi.org/10.5753/cbie.sbie.2019.429.