Compare students from Univeersity of Brasília by Gender Using t-SNE Techniques
Resumo
The presence of women in technology-related courses is declining every year, reaching in 2016 less than 20% of the total student body in the field of Computer Science in Brazil. This paper proposes to study visualization techniques to analyze and identify profile patterns of undergraduate students on courses in the computing field, comparing gender data (female and male). A visual data and a quantitative analysis were used with dimension reduction technique (t-SNE) considering the students situation at University of Brasília (active, drop out, graduated, death and others). The layouts revealed that the high number of students leaving without graduating is not a gender-related problem. Also the quantitative analysis shows that being in the group of quota students does not have a significant bearing on whether students leave with or without graduating.
Referências
Baker, R., Isotani, S., and Carvalho, A. (2011). Mineração de dados educacionais: Oportunidades para o Brasil. Brazilian Journal of Computers in Education, 19(02): 03.
Borges, V.R.P., Esteves, S., de Nardi Araújo, P., de Oliveira, L.C., and Holanda, M. (2018). Using principal component analysis to support students’ performance prediction and data analysis. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação - SBIE), volume 29, page 1383.
Cheryan, S., Plaut, V.C., Handron, C., and Hudson, L. (2013). The stereotypical computer scientist: Gendered media representations as a barrier to inclusion for women. Sex Roles, 69(1): 58–71.
Corrêa, A.M.J. and Sferra, H. (2003). Conceitos e aplicações de data mining. Revista de Ciência & Tecnologia, 11: 19–34.
Dominguez, M., Vilanova, R., Prada, M., Vicario, J., Barbu, M., Pereira, M.J., Podpora, M., Spagnolini, U., Alves, P., and Paganoni, A. (2018). Speet: visual data analysis of engineering students performance from academic data. LASI 2018 - Learning Analytics Summer Institutes - Universidad de Leon.
Estivalet, L.F. (2000). O uso de ícones na visualização de informações.
Hansen, L.A., Chagas, L.M., Borges, V.R., Holanda, M., et al. (2018). Análise visual de dados educacionais: um estudo de gênero nos cursos de computação da universidade de brasília. In 12o Women in Information Technology (WIT 2018), volume 12. SBC.
Henn, S. (2014). When women stopped coding. NPR Planet Money, 21.
Holanda, M., Dantas, M., Couto, G., Correa, J.M., de Araújo, A.P.F., and Walter, M.E.T. (2017). Perfil das alunas no departamento de computação da universidade de brasília.
Maaten, L.v.d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research, 9: 2579–2605.
Mercier, E.M., Barron, B., and O’Connor, K.M. (2006). Images of self and others as computer users: the role of gender and experience. Journal of Computer Assisted Learning, 22(5): 335–348.
Navega, S. (2002). Princípios essenciais do data mining. Anais do Infoimagem.
Papastergiou, M. (2008). Are Computer Science and Information Technology still masculine fields? High school students’ perceptions and career choices. Computers & Education, 51(2): 594–608.
SBC (2016). Educação superior em computação, estatísticas 2016. Sociedade Brasileira de Computação - SBC. Disponível em: [link].
Stout, J.G., Grunberg, V.A., and Ito, T.A. (2016). Gender roles and stereotypes about science careers help explain women and men’s science pursuits. Sex Roles, 75(9): 490–499.
