Utilizando Teoria da Informação para Identificar Conversas de Pedofilia em Redes Sociais de Mensagens Instantâneas

  • Juliana G. Postal UFAM/SIDIA
  • Eduardo F. Nakamura UFAM

Abstract


Social networks of instant messaging, such as Whatsapp, represent a real threat for children and teenagers, who can easily become targets of sexual predators and pedophiles. Hence, the automatic identification of pedophile chats represent a key tool to protect the young users of social networks. However, these networks have two sensitive particularities: (1) messages are often stored only locally; (2) mobile devices of limited processing power are the major interfaces. In this context, the state-of-the-art has a prohibitive cost to run on mobile devices. On the other hand, the nature of the peer-to-peer communication of such networks make it inviable to process the chat on the cloud, without risking to expose the victims. In this work, we present a new method, based on the Shannon entropy and the Jensen-Shannon divergence, to identify pedophile chats, that achieves nearly 90% of F1 and F0,5, and can be up to 72.8% faster than the state-of-the-art.

References

Bogdanova, D., Rosso, P., e Solorio, T. (2012). On the impact of sentiment and emotion based features in detecting online sexual predators. In In Proceedings of the 3rd Workshop in Computational Approaches to Subjectivity and Sentiment Analysis, pages 110 – 118, Jeju, Korea. Association for Computational Linguistics.

Cheong, Y., Jensen, A. K., Gudnadottir, E. R., Bae, B., e Togelius, J. (2015). Detecting predatory behavior in game chats. Transactions on Computational Intelligence and AI in Games, 7(3):220 – 232.

Kontostathis, A., Edwards, L., e Leatherman, A. (2010). Text Mining and Cybercrime, pages 149 – 164. John Wiley & Sons, Ltd, West Sussex, United Kingdom.

Lanning, K. V., for Missing & Exploited Children, N. C., et al. (2010). Child molesters: A behavioral analysis for professionals investigating the sexual exploitation of children. National Center for Missing & Exploited Children with Office of Juvenile Justice and Delinquency Prevention, Virginia, USA.

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE Transactions on Information theory, 37(1):145–151.

Liu,W. e Chawla, S. (2011). Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets, pages 345 – 356. Springer Berlin Heidelberg, Berlin, Heidelberg.

Livingstone, S., Haddon, L., Görzig, A., e Ólafsson, K. (2010). Risks and safety on the Internet: the perspective of European children. LSE: EU Kids Online, London, United Kingdom.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press.

Manning, C. D., Raghavan, P., e Schutze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., e McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Association for Computational Linguistics (ACL) System Demonstrations, pages 55–60.

Morris, C. e Hirst, G. (2012). Identifying sexual predators by svm classification with lexical and behavioral features. In Working notes of the 3rd Conference and Labs of the Evaluation Forum, Evaluation Labs and Workshop, volume 12, pages 1 – 29, Rome, Italy. The CLEF Initiative.

Parapar, J., Losada, D., e Barreiro, A. (2012). A learning-based approach for the identification of sexual predators in chat logs. In Working notes of the 3rd Conference and Labs of the Evaluation Forum, Evaluation Labs and Workshop, volume 12, pages 1 – 12, Rome, Italy. The CLEF Initiative.

Peersman, C., Vaassen, F., Van Asch, V., e Daelemans, W. (2012). Conversation level constraints on pedophile detection in chat rooms. In Working notes of the 3rd Conference and Labs of the Evaluation Forum, Evaluation Labs and Workshop, volume 12, pages 1 – 13, Rome, Italy. The CLEF Initiative.

Pendar, N. (2007). Toward spotting the pedophile telling victim from predator in text chats. In In Proceedings of the International Conference on Semantic Computing (ICSC), volume 1, pages 235 – 241, California, USA. IEEE.

Reis, J., Miranda, M., Bastos, L., Prates, R., e Benevenuto, F. (2016). Uma análise do impacto do anonimato em comentários de notícias online. In Anais do 13o. Simpósio Brasileiro de Sistemas Colaborativos (SBSC), pages 1290–1304. SBC.

Rosso, O. A., Craig, H., e Moscato, P. (2009). Shakespeare and other english renaissance authors as characterized by information theory complexity quantifiers. Physica A: Statistical Mechanics and its Applications, 388(6):916 – 926.

Silva, C., Barbosa, G., Silva, I., Silva, T., e Mourão, F. (2016). Privacidade para crianças e adolescentes em redes sociais online sob a lente da usabilidade: Um estudo de caso no facebook. In Anais do 13o. Simpósio Brasileiro de Sistemas Colaborativos (SBSC), pages 1245–1259. SBC.

Villatoro-Tello, E., Juárez-González, A., Escalante, H. J., Montes-y Gómez, M., e Pineda, L. V. (2012). Two-step approach for effective detection of misbehaving users in chats. In Working notes of the 3rd Conference and Labs of the Evaluation Forum, Evaluation Labs and Workshop, volume 12, pages 1 – 12, Rome, Italy. The CLEF Initiative.
Published
2017-07-02
POSTAL, Juliana G.; NAKAMURA, Eduardo F.. Utilizando Teoria da Informação para Identificar Conversas de Pedofilia em Redes Sociais de Mensagens Instantâneas. In: BRAZILIAN SYMPOSIUM ON COLLABORATIVE SYSTEMS (SBSC), 14. , 2017, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 1328-1341. ISSN 2326-2842. DOI: https://doi.org/10.5753/sbsc.2017.9957.