Context-SE: Conceptual Framework to Analyse Context and Provenance in Scientific Experiments

  • Lenita M. Ambrósio UFJF
  • José Maria N. David UFJF
  • Regina Braga UFJF
  • Fernanda Campos UFJF
  • Victor Ströele UFJF
  • Marco Antônio Araújo UFJF

Resumo


Managing contextual and provenance information plays a key role in the scientific domain. Activities which are carried out in this domain are often collaborative and distributed. Thus, aiming to examine and audit results already obtained, researchers need to be aware of the actions taken by other members of the group. Contextual and provenance information are essential to enhance the reproducibility and reuse of experiment. The goal of this work is to present a conceptual framework that provides guidelines capable of supporting the modeling of provenance and context in a software ecosystem platform to support scientific experimentation. Preliminary results are also presented when the proposed solution is used to design software ecosystem platform components.

Referências

Ambrósio, L. M., David, J. M. N., Braga, R., Str¨oele, V., Campos, F., and Araújo, M. A. (2017). Prov-SE-O: a provenance ontology to support scientists in scientific experimentation process. In Proceedings of the International Workshop on Software Engineering for Science - International Conference on Software Engineering. ACM.

Bazire, M. and Brézillon, P. (2005). Understanding context before using it. In International and Interdisciplinary Conference on Modeling and Using Context, pages 29–40. Springer.

Belloum, A., Inda, M. A., Vasunin, D., Korkhov, V., Zhao, Z., Rauwerda, H., Breit, T. M., Bubak, M., and Hertzberger, L. O. (2011). Collaborative e-science experiments and scientific workflows. IEEE Internet Computing, 15(4):39–47. Brézillon, P. (2011). Contextualization of scientific workflows. In International and Interdisciplinary Conference on Modeling and Using Context, pages 40–53. Springer.

Brézillon, P., Borges, M. R., Pino, J. A., and Pomerol, J.-C. (2004). Context-based awareness in group work. In FLAIRS Conference, pages 575–580.

Costa, F., Oliveira, D. d., and Mattoso, M. (2014). Towards an adaptive and distributed architecture for managing workflow provenance data. In Proceedings of the 2014 IEEE 10th International Conference on e-Science, pages 79–82.

Cuevas-Vicenttín, V., Kianmajd, P., Lud¨ascher, B., Missier, P., Chirigati, F., Wei, Y., Koop, D., and Dey, S. (2014). The pbase scientific workflow provenance repository. International Journal of Digital Curation, 9(2):28–38.

Davidson, S. B. and Freire, J. (2008). Provenance and scientific workflows: Challenges and opportunities. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pages 1345–1350.

Deelman, E., Gannon, D., Shields, M., and Taylor, I. (2009). Workflows and e-science: An overview of workflow system features and capabilities. Future Gener. Comput. Syst., 25(5):528–540.

Dey, A. K., Abowd, G. D., and Salber, D. (2001). A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-computer interaction, 16(2):97–166.

Freitas, V., David, J. M., Braga, R., and Campos, F. (2015). An architecture for scientific software ecosystem. In 9th Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems (WDES 2015), pages 41–48. (in portuguese).

Goble, C. A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D., Borkum, M., Bechhofer, S., Roos, M., Li, P., et al. (2010). myexperiment: a repository and social network for the sharing of bioinformatics workflows. Nucleic acids research, 38(suppl 2):W677–W682.

Hey, T., Tansley, S., Tolle, K. M., et al. (2009). The fourth paradigm: data-intensive scientific discovery, volume 1. Microsoft research Redmond, WA.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al. (2004). Swrl: A semantic web rule language combining owl and ruleml. W3C Member submission, 21:79.

Lim, C., Lu, S., Chebotko, A., and Fotouhi, F. (2010). Prospective and retrospective provenance collection in scientific workflow environments. In Services Computing (SCC), 2010 IEEE International Conference on, pages 449–456.

Manikas, K. (2016). Revisiting software ecosystems research: A longitudinal literature study. Journal of Systems and Software, 117:84–103.

Mayer, R., Miksa, T., and Rauber, A. (2014). Ontologies for describing the context of scientific experiment processes. In e-Science (e-Science), 2014 IEEE 10th International Conference on, volume 1, pages 153–160. IEEE.

Missier, P. (2016). The Lifecycle of Provenance Metadata and Its Associated Challenges and Opportunities, pages 127–137. Springer International Publishing.

Nunes, V. T., Santoro, F. M., and Borges, M. R. (2007). Um modelo para gest˜ao de conhecimento baseado em contexto. XXVII Simpósio Brasileiro de Sistemas Colaborativos (SBSC), pages 69–82.

Pereira, A. F., Braga, R., Campos, F., et al. (2016). An architecture to enhance collaboration in scientific software product line. In 2016 49th Hawaii International Conference on System Sciences (HICSS), pages 338–347. IEEE.

Rittenbruch, M. (2002). Atmosphere: a framework for contextual awareness. International Journal of Human-Computer Interaction, 14(2):159–180.

Rosa, M. G., Borges, M. R., and Santoro, F. M. (2003). A conceptual framework for analyzing the use of context in groupware. In International Conference on Collaboration and Technology, pages 300–313. Springer.

Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A survey of data provenance in escience. SIGMOD Rec., 34(3):31–36.

Sirqueira, T. F., Dalpra, H. L., Braga, R., Araújo, M. A. P., David, J. M. N., and Campos, F. (2016). E-seco proversion: An approach for scientific workflows maintenance and evolution. Procedia Computer Science, 100:547–556.
Publicado
02/07/2017
AMBRÓSIO, Lenita M.; DAVID, José Maria N.; BRAGA, Regina; CAMPOS, Fernanda; STRÖELE, Victor; ARAÚJO, Marco Antônio. Context-SE: Conceptual Framework to Analyse Context and Provenance in Scientific Experiments. In: SIMPÓSIO BRASILEIRO DE SISTEMAS COLABORATIVOS (SBSC), 14. , 2017, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 1372-1386. ISSN 2326-2842. DOI: https://doi.org/10.5753/sbsc.2017.9960.