Depression Symptoms Identification through Social Media Data: Applying Design Science Research to Develop a Classification Model
Abstract
The article addresses the prevalence of depression as a debilitating condition and underscores the importance of early identification of symptoms for timely interventions. Exploring user-generated content on social networks, the study proposes the use of machine learning models in detecting depressive symptoms. Following the DSR methodology, the research validates the effectiveness of these models compared to existing approaches, involving healthcare professionals and domain experts. The article introduces an innovative stacking model using LIWC metrics from social media posts, contributing to the understanding of machine learning-based solutions in identifying symptoms of depressive disorder.
References
Borges, M., Bicharra, A. C., Vivacqua, A., and Vieira, V. (2018). Colaboração na resposta a emergências. Technical Report 1, Sociedade Brasileira de Computação
Cafezeiro, I., Viterbo, J., Costa, L., Salgado, L., Rocha, M., and Monteiro, R. (2017). Strengthening of the Sociotechnical Approach in Information Systems Research, pages 133–147.
Carvalho, L. P., Suzano, J. A., Gonçalvez, I., Pereira Filho, S., Santoro, F. M., and Oliveira, J. (2021). A psychosocial perspective about mental health and league of legends in brazil. Journal on Interactive Systems, 12(1):35–57.
da Costa, A. M. N. and Pimentel, M. G. (2012). Sistemas colaborativos para uma nova sociedade e um novo ser humano.
De Choudhury, M. (2014). Opportunities of social media in health and well-being. XRDS, 21(2):23–27.
Elkin, N. (2008). How america searches: Health and wellness. Opinion Research Corporation: iCrossing, pages 1–17.
atima, I., Abbasi, B. U. D., Khan, S., Al-Saeed, M., Ahmad, H. F., and Mumtaz, R. (2019). Prediction of postpartum depression using machine learning techniques from social media text. Expert Systems, 36(4).
Filho, S. L., Carvalho, L., Brandão, M., Oliveira, J., Santoro, F., and da Silva, M. (2023a). Bresci na última década: Uma análise baseada em redes sociais. In Anais do XVII Brazilian e-Science Workshop, pages 9–16, Porto Alegre, RS, Brasil. SBC.
Filho, S. L., Carvalho, L., Suzano, J., Brandão, M., Oliveira, J., and Santoro, F. (2023b). Csbcset: Um conjunto de dados para uma década de csbc, seus eventos e publicações. In Anais do XII Brazilian Workshop on Social Network Analysis and Mining, pages 240–245, Porto Alegre, RS, Brasil. SBC.
Hevner, A., March, S., and Park, J. (2004). Design Science in Information Systems Research. MIS Quarterly: Management Information Systems, 28(1):75–105.
Horvitz, E. and Mulligan, D. (2015). Data, privacy, and the greater good. Science, 349(6245):253–255.
Liu, J. and Shi, M. (2022). A Hybrid Feature Selection and Ensemble Approach to Identify Depressed Users in Online Social Media. Frontiers in Psychology, 12:802821.
Low, D. M., Rumker, L., Torous, J., Cecchi, G., Ghosh, S. S., and Talkar, T. (2020). Natural language processing reveals vulnerable mental health support groups and heightened health anxiety on reddit during covid-19: Observational study. Journal of medical Internet research, 22(10):e22635.
Mohammed, M. B., Abir, A. S. M., Salsabil, L., Shahriar, M., and Fahmin, A. (2021). Depression Analysis from Social Media Data in Bangla Language: An Ensemble Approach. In 2021 Emerging Technology in Computing, Communication and Electronics (ETCCE), pages 1–6. IEEE.
P. Lima Filho, S., Ferreira da Silva, M., Oliveira, J., and Ruback, L. (2022). A study about gathering features in depression detection’ problem with health professionals community. iSys - Brazilian Journal of Information Systems, 15(1):10:1–10:26.
Pimentel, M., Filippo, D., and Santoro, F. M. (2019). Design Science Research: fazendo pesquisas científicas rigorosas atreladas ao desenvolvimento de artefatos computacionais projetados para a educação. In Metodologia de Pesquisa científica em Informática na educação: Concepção de Pesquisa (Volume 1), chapter 5, pages 29–43.
imentel, M. G., Gerosa, M. A., Filippo, D., Raposo, A. B., Fuks, H., and Lucena, C. J. P. (2006). Modelo 3c de colaboração para o desenvolvimento de sistemas colaborativos.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.
Simon, H. A. (2019). The sciences of the artificial. MIT press.
Skaik, R. and Inkpen, D. (2021). Using Social Media for Mental Health Surveillance. ACM Computing Surveys, 53(6):1–31.
Tshimula, J. M., Chikhaoui, B., and Wang*, S. (2022). COVID-19: Detecting depression signals during stay-at-home period. Health Informatics Journal, 28(2):146045822210949.
Yen, S.-C., Chu, K.-C., and Tsai, P.-Y. (2021). Prediction model of social network suicide ideation by small sample. In 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), pages 385–389. IEEE.
