Detecção de Bots Sociais: Uma Discussão sobre o Tempo de Vida de Abordagens Tradicionais

Resumo


Trabalhos de detecção de bots sociais parecem focar em um ponto comum: a acurácia. Mas, se a acurácia pode ser perdida com a evolução dos bots, o tempo de vida útil destas soluções também deve ser discutido. Utilizando datasets de 2010 até 2018, para representar essa a evolução, três modelos tradicionais foram avaliados para compreensão desse tempo de vida. Observando as alterações de desempenho, foi possível perceber uma perda de acurácia ao longo dos anos e que ela reflete uma alteração gradual do comportamento dos bots. Outros fatores, como a heterogeneidade dos dados e a capacidade de manter-se capaz de detectar contas humanas ao longo dos anos (verdadeiros negativos) também são discutidos.

Palavras-chave: Bots Sociais, Machine Learning, Redes Sociais Online, Segurança de Redes

Referências

Braz, P. A. and Goldschmidt, R. R. (2018). "Redes Neurais Convolucionais na Detecção de Bots Sociais: Um Método Baseado na Clusterização de Mensagens Textuais".

Chavoshi, N., Hamooni, H. and Mueen, A. (2016). "Identifying Correlated Bots in Twitter", Social Informatics. Lecture Notes in Computer Science. Cham: Springer International Publishing. v. 10047p. 14–21.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, v. 20, n. 3, p. 273–297.

Cresci, S. (2020). "A decade of social bot detection". Communications of the ACM, v. 63, n. 10, p. 72–83.

Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A. and Tesconi, M. (2015). "Fame for sale: Efficient detection of fake Twitter followers". Decision Support Systems, v. 80, p. 56–71.

Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A. and Tesconi, M. (2017). "The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race".

Cresci, S., Petrocchi, M., Spognardi, A. and Tognazzi, S. (2019). "Better Safe Than Sorry: An Adversarial Approach to Improve Social Bot Detection".

Echeverría, J., De Cristofaro, E., Kourtellis, N., et al. (2018). "LOBO: Evaluation of Generalization Deficiencies in Twitter Bot Classifiers", Proceedings of the 34th Annual Computer Security Applications Conference. ACM.

Egli, A., Rosati, P., Lynn, T. and Sinclair, G. (2021). "Bad Robot: A Preliminary Exploration of the Prevalence of Automated Software Programmes and Social Bots"

Ferrara, E., Varol, O., Davis, C., Menczer, F. and Flammini, A. (2016). "The rise of social bots". Communications of the ACM, v. 59, n. 7, p. 96–104.

Jr, S. B., Campos, G. F. C., Tavares, G. M., et al. (2018). "Detection of Human, Legitimate Bot, and Malicious Bot in Online Social Networks Based on Wavelets". ACM Transactions on Multimedia Computing, Communications, and Applications, v. 14, n. 1s, p. 1–17.

Kramer, O. (2013). K-Nearest Neighbors. In: Kramer, O.[Ed.]. Dimensionality Reduction with Unsupervised Nearest Neighbors. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 13–23.

Latah, M. (2020). "Detection of malicious social bots: A survey and a refined taxonomy". Expert Systems with Applications, v. 151, p. 113383.

Popovic, D. (2000). "Intelligent Control with Neural Networks". Soft Computing and Intelligent Systems. Elsevier. p. 419–467.

Rauchfleisch, A. and Kaiser, J. (2020). "The False positive problem of automatic bot detection", social science research. PLOS ONE, v. 15, n. 10, p. e0241045.

Rodríguez-Ruiz, J., Mata-Sánchez, J. I., Monroy, R., Loyola-González, O. and López-Cuevas, A. (2020). "A one-class classification approach for bot detection on Twitter". Computers & Security, v. 91, p. 101715.

Samper-Escalante, L. D., Loyola-González, O., Monroy, R. and Medina-Pérez, M. A. (2021). "Bot Datasets on Twitter: Analysis and Challenges". Applied Sciences, v. 11, n. 9, p. 4105.

Santos, B., Ferreira G., do Ó, M, Braz, R. and Digiampietri, L. (2020). "Comparação de algoritmos para detecção de bots sociais nas eleições presidenciais no Brasil em 2018 utilizando características do usuário". Revista Brasileira de Computação Aplicada, v. 13, n. 1.

Santos, J., Ituassu, A., Lifschitz, S., et al. (2021). "Das milícias digitais ao comportamento coordenado: métodos interdisciplinares de análise e identificação de bots nas eleições brasileiras". 2021: ANAIS DO X BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING, p. 187–192.

Sayyadiharikandeh, M., Varol, O., Yang, K.-C., Flammini, A. and Menczer, F. (2020). "Detection of Novel Social Bots by Ensembles of Specialized Classifiers".

Stein, T., Chen, E. and Mangla, K. (2011). "Facebook immune system", Proceedings of the 4th Workshop on Social Network Systems - SNS ’11. ACM

Wang, P., Angarita, R. and Renna, I. (2018). "Is this the Era of Misinformation yet: Combining Social Bots and Fake News to Deceive the Masses", Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. ACM Press.

Yang, K.-C., Varol, O., Hui, P.-M. and Menczer, F. (2020). "Scalable and Generalizable Social Bot Detection through Data Selection", Proceedings of the AAAI Conference on Artificial Intelligence, v. 34, n. 01, p. 1096–1103.
Publicado
04/10/2021
DA MATA, Erick N.; DIAS, Gabriela M. S.; SALLES, Ronaldo M.. Detecção de Bots Sociais: Uma Discussão sobre o Tempo de Vida de Abordagens Tradicionais. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 21. , 2021, Belém. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 337-350. DOI: https://doi.org/10.5753/sbseg.2021.17326.