Detecção de Fraudes na Emissão de Certificados Digitais dentro da Infraestrutura de Chaves Públicas Brasileira

  • Fernanda O. Gomes UFSC
  • Bruno M. Agostinho UFSC
  • Julia Baldisera UFSC
  • Raphael S. da Silveira UFSC
  • Jean E. Martina UFSC

Abstract


In Brazil, it is possible to interact virtually with any e-gov system through the use of digital certificates issued by a government-controlled PublicKey Infrastructure (ICP-Brasil). The digital certificates are a perfect tool for malicious people thief others identity virtually. Fraud using digital certificate can open access, for instance, to systems authentication and confidential documents. The current process is manual, costly, subject to human failure, and corruption. Given this, our work proposes the automation of the fraud detection process. We propose a hybrid machine learning approach using a clustering technique based on DBSCAN and classification using the data captured in the process of issuing digital certificates established by the ICP-Brasil. This fraud detection system makes the ICP-Brasil system safer, faster, and cheaper.

References

Abdelhalim, A. and Traoré, I. (2010). Unsupervised identity application fraud detection using rule-based decision tree. In SEDE, pages 261–268.

Agrawal, S. and Agrawal, J. (2015). Survey on anomaly detection using data mining techniques. Procedia Computer Science, 60:708–713.

Amazon (2020). Detecte, analise e compare rostos.

Awoyemi, J. O., Adetunmbi, A. O., and Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 International Conference on Computing Networking and Informatics (ICCNI), pages 1–9. IEEE.

Bolton, R. J. and Hand, D. J. (2002). Statistical fraud detection: A review. Statistical science, pages 235–249.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3):1–58.

da Costa, K. A., Papa, J. P., Lisboa, C. O., Munoz, R., and de Albuquerque, V. H. C. (2019). Internet of things: A survey on machine learning-based intrusion detection approaches. Computer Networks, 151:147–157.

Dutta, S., Gupta, A. K., and Narayan, N. (2017). Identity crime detection using data mining. In 2017 3rd International Conference on Computational Intelligence and Networks (CINE), pages 1–5. IEEE.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231.

Han, J., Kamber, M., and Pei, J. (2011). Data mining concepts and techniques third edition. Morgan Kaufmann.

ITI (2020a). Instituto Nacional de Tecnologia da Informação.

ITI (2020b). Procedimento de Identificação do Requerente.

Kou, Y., Lu, C.-T., Sirwongwattana, S., and Huang, Y.-P. (2004). Survey of fraud detection techniques. In IEEE International Conference on Networking, Sensing and Control, 2004, volume 2, pages 749–754. IEEE.

Kshirsagar, A. and Dole, L. (2014). Recognizing the theft of identity using data mining. International Journal of Emerging Technology and Advanced Engineering (ISSN 22502459, ISO 9001: 2008 Certified Journal, Volume 4, Issue 4.

Lee, W. and Stolfo, S. (1998). Data mining approaches for intrusion detection.

Lee, W., Stolfo, S. J., and Mok, K. W. (2000). Adaptive intrusion detection: A data mining approach. Artificial Intelligence Review, 14(6):533–567.

Padhi, B., Chakravarty, S., and Biswal, B. (2020). Anonymized credit card transaction using machine learning techniques. In Advances in Intelligent Computing and Communication, pages 413–423. Springer.

Phua, C., Gayler, R., Lee, V., and Smith-Miles, K. (2009). On the communal analysis suspicion scoring for identity crime in streaming credit applications. European Journal of Operational Research, 195(2):595–612.

Phua, C., Lee, V., Smith, K., and Gayler, R. (2010a). A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119.

Phua, C., Smith-Miles, K., Lee, V., and Gayler, R. (2010b). Resilient identity crime detection. IEEE transactions on knowledge and data engineering, 24(3):533–546.

Sproule, S. and Archer, N. (2007). Defining identity theft. In Eighth World Congress on the Management of eBusiness (WCMeB 2007), pages 20–20. IEEE.

Thennakoon, A., Bhagyani, C., Premadasa, S., Mihiranga, S., and Kuruwitaarachchi, N. In 2019 9th (2019). Real-time credit card fraud detection using machine learning. International Conference on Cloud Computing, Data Science & Engineering (Confluence), pages 488–493. IEEE.

Wheeler, R. and Aitken, S. (2000). Multiple algorithms for fraud detection. In Applications and Innovations in Intelligent Systems VII, pages 219–231. Springer.

Zhao, Q., Chen, K., Li, T., Yang, Y., and Wang, X. (2018). Detecting telecommunication fraud by understanding the contents of a call. Cybersecurity, 1(1):8.
Published
2020-10-13
GOMES, Fernanda O.; AGOSTINHO, Bruno M.; BALDISERA, Julia; SILVEIRA, Raphael S. da; MARTINA, Jean E.. Detecção de Fraudes na Emissão de Certificados Digitais dentro da Infraestrutura de Chaves Públicas Brasileira. In: BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 20. , 2020, Petrópolis. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 215-228. DOI: https://doi.org/10.5753/sbseg.2020.19239.