CUYASHE: Computação sobre dados cifrados em GPGPUs
Resumo
Em tempos de computação em nuvem, há interesse em se utilizar criptossistemas que não apenas garantam a segurança dos dados no transporte e armazenamento, mas também durante o processamento, de forma a preservar a privacidade dos contratantes e detentores dos dados. Esquemas de cifração homomórfica são candidatos promissores para computação sobre dados cifrados, satisfazendo novos requisitos de segurança. Neste trabalho, é apresentada CUYASHE, uma implementação em GPGPUs do criptossistema completamente homomórfico em nível, YASHE. A implementação emprega a plataforma CUDA, o Teorema Chinês do Resto e a Transformada de Fourier para obter ganhos significativos de desempenho. Quando comparada com a implementação estado da arte em CPUs, foram obtidos ganhos de 20% de velocidade na adição e 58% na multiplicação homomórfica, operações críticas do ponto de vista de desempenho para se avaliar qualquer função sobre dados cifrados. Isso demonstra que GPGPUs são uma tecnologia adequada para se implementar serviços de computação em nuvem que preservam a privacidade.Referências
Alves, P. and Aranha, D. (2015). cuYASHE. https://github.com/pdroalves/cuYASHE. Acessado: 08/09/2015.
Bos, J., Lauter, K., Loftus, J., and Naehrig, M. (2013). Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme. In Stam, M., editor, Cryptography and Coding, volume 8308 of Lecture Notes in Computer Science, pages 45–64. Springer Berlin Heidelberg.
Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012). (Leveled) Fully Homomorphic Encryption Without Bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 309–325, New York, NY, USA. ACM.
Buyya, R. (2009). Market-Oriented Cloud Computing: Vision, Hype, and Reality of Delivering Computing As the 5th Utility. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID ’09, pages 1–, Washington, DC, USA. IEEE Computer Society.
Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., George C. Maling, J., Nelson, D. E., Rader, C. M., and Welch, P. D. (1967). What is the fast Fourier transform? IEEE Transactions on Audio and Electroacoustics, 15:45–55.
Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19:297–301.
ElGamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Blakley, G. and Chaum, D., editors, Advances in Cryptology, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer Berlin Heidelberg.
Gentry, C. (2010). Computing Arbitrary Functions of Encrypted Data. Commun. ACM, 53(3):97–105.
Hoffstein, J., Pipher, J., and Silverman, J. (1998). NTRU: A ring-based public key cryptosystem. In Buhler, J., editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Computer Science, pages 267–288. Springer Berlin Heidelberg.
Lepoint, T. and Naehrig, M. (2014). A Comparison of the Homomorphic Encryption Schemes FV and YASHE. In Pointcheval, D. and Vergnaud, D., editors, Progress in Cryptology – AFRICACRYPT 2014, volume 8469 of Lecture Notes in Computer Science, pages 318–335. Springer International Publishing.
NVIDIA (2015a). CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/cufft/. Acessado: 12/08/2015.
NVIDIA (2015b). GPU Cloud Computing. http://www.nvidia.com/object/gpu-cloud-computing-services.html. Acessado: 11/09/2015.
Paillier, P. (1999). Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Stern, J., editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer Berlin Heidelberg.
Bos, J., Lauter, K., Loftus, J., and Naehrig, M. (2013). Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme. In Stam, M., editor, Cryptography and Coding, volume 8308 of Lecture Notes in Computer Science, pages 45–64. Springer Berlin Heidelberg.
Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012). (Leveled) Fully Homomorphic Encryption Without Bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 309–325, New York, NY, USA. ACM.
Buyya, R. (2009). Market-Oriented Cloud Computing: Vision, Hype, and Reality of Delivering Computing As the 5th Utility. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID ’09, pages 1–, Washington, DC, USA. IEEE Computer Society.
Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., George C. Maling, J., Nelson, D. E., Rader, C. M., and Welch, P. D. (1967). What is the fast Fourier transform? IEEE Transactions on Audio and Electroacoustics, 15:45–55.
Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19:297–301.
ElGamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Blakley, G. and Chaum, D., editors, Advances in Cryptology, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer Berlin Heidelberg.
Gentry, C. (2010). Computing Arbitrary Functions of Encrypted Data. Commun. ACM, 53(3):97–105.
Hoffstein, J., Pipher, J., and Silverman, J. (1998). NTRU: A ring-based public key cryptosystem. In Buhler, J., editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Computer Science, pages 267–288. Springer Berlin Heidelberg.
Lepoint, T. and Naehrig, M. (2014). A Comparison of the Homomorphic Encryption Schemes FV and YASHE. In Pointcheval, D. and Vergnaud, D., editors, Progress in Cryptology – AFRICACRYPT 2014, volume 8469 of Lecture Notes in Computer Science, pages 318–335. Springer International Publishing.
NVIDIA (2015a). CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/cufft/. Acessado: 12/08/2015.
NVIDIA (2015b). GPU Cloud Computing. http://www.nvidia.com/object/gpu-cloud-computing-services.html. Acessado: 11/09/2015.
Paillier, P. (1999). Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Stern, J., editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer Berlin Heidelberg.
Publicado
09/11/2015
Como Citar
ALVES, Pedro Geraldo M. R.; ARANHA, Diego de Freitas.
CUYASHE: Computação sobre dados cifrados em GPGPUs. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 15. , 2015, Florianópolis.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2015
.
p. 198-210.
DOI: https://doi.org/10.5753/sbseg.2015.20095.