Principal Component Analysis over encrypted data using homomorphic encryption
Abstract
We describe an algorithm to perform Principal Component Analysis (PCA) over encrypted data using homomorphic encryption. PCA is a fundamental tool for exploratory data analysis and dimensionality reduction, and thus a useful application for privacy-preserving computation in the cloud.References
Aono, Y., Hayashi, T., Phong, L. T., and Wang, L. (2015). Fast and secure linear regression and biometric authentication with security update. Cryptology ePrint Archive, Report 2015/692. http://eprint.iacr.org/.
Bos, J. W., Lauter, K., Loftus, J., and Naehrig, M. (2013). Improved security for a ringbased fully homomorphic encryption scheme. In Cryptography and Coding (IMACC), pages 45–64. Springer.
Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics.
Watkins, D. S. (2005). Fundamentals of Matrix Computations. Wiley, 2nd edition.
Bos, J. W., Lauter, K., Loftus, J., and Naehrig, M. (2013). Improved security for a ringbased fully homomorphic encryption scheme. In Cryptography and Coding (IMACC), pages 45–64. Springer.
Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics.
Watkins, D. S. (2005). Fundamentals of Matrix Computations. Wiley, 2nd edition.
Published
2015-11-09
How to Cite
PEREIRA, Hilder V. L.; ARANHA, Diego F..
Principal Component Analysis over encrypted data using homomorphic encryption. In: BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 15. , 2015, Florianópolis.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2015
.
p. 338-341.
DOI: https://doi.org/10.5753/sbseg.2015.20110.
