Modified Current Mask Generation (M-CMG): An Improved Countermeasure Against Differential Power Analysis Attacks

  • Hedi Besrour Monastir University
  • Daniel Gomes Mesquita UFU
  • Machhout Mohsen Monastir University
  • Tourki Rached Monastir University

Resumo


Durante seu funcionamento, dispositivos criptográficos vazam informações, que podem ser exploradas por vários ataques, tal qual a análise diferencial de consumo de potência (DPA). Para proteger o algoritmo de criptografia AES de ataques desse tipo, sem que seja necessário modificar o algoritmo em si, pode-se usar uma contramedida chamada Geração de Máscara de Corrente (CMG). Essa contramedida consiste na estabilização do consumo do circuito criptográfico, dificultando assim a exploração dessa informação. Entretanto, essa contramedida apresenta limitações em termos de estabilidade, especialmente relacionada ao efeito de Early e à variação de temperatura do circuito. O objetivo deste artigo é demonstrar esses problemas e também propor a solução para ambos, criando assim a contramedida M-CMG: Modified Current Mask Generation.

Referências

Alioto, M., Poli, M., Rocchi, S., and Vignoli, V. (2006). Power modeling of precharged address bus and application to multi-bit dpa attacks to des algorithm. In Proceedings of the 16th Power and Timing Modeling, Optimization and Simulation, PATMOS’06, pages 593–602, Berlin, Heidelberg. Springer-Verlag.

Bogdanov, A., Khovratovich, D., and Rechberger, C. (2011). Biclique cryptanalysis of the full aes. Cryptology ePrint Archive, Report 2011/449. http://eprint.iacr.org/.

Daemen, J. and Rijmen, V. (2001). National bureau of standards advanced encryption standard. Technical Report FIPS Publication 197, National Bureau of Standards.

Early, J. (1952). Effects of space-charge layer widening in junction transistors. Proceedings of the IRE, 40(11):1401–1406.

Guilley, S. (2007). Contremesures Géometriques aux Attaques Exploitant les Canaux Cachés. PhD thesis, Ecole Nationale Supérieure de Télécommunications, ENST.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In Proceedings of CRYPTO ’99, pages 388–397, Santa Barbara, USA. Springer-Verlag.

Mangard, S., Oswald, E., and Popp, T. (2007). Power Analysis Attacks: Revealing the secrets of smart cards. Springer.

McAndrew, C. C. and Nagel, L. (1996). Early effect modeling in spice. IEEE Journal of Solid-State Circuits, 31(1):136 –138.

Mesquita, D., Techer, J.-D., Torres, L., Robert, M., Cathebras, G., Sassatelli, G., and Moraes, F. (2007). IFIP Series: VLSI-SOC: From Systems to Chips, chapter 7, pages 317–330. Springer Verlag, College Station, Texas.

Mesquita, D., Techer, J.-D., Torres, L., Sassatelli, G., Cambon, G., Robert, M., and Moraes, F. (2005). Current mask generation: A new hardware countermeasure for masking signatures of cryptographic cores. In Proceedings of VLSI-SoC, page in press, Perth, Australia.

Messerges, T., Dabbish, E., and Sloan, R. (1999). Investigations of power analysis attacks on smartcards. In Proceedings of USENIX’99, pages 151–162.

Munro, P. C. (1991). Simulating the current mirror with a self-heating bjt model. IEEE Journal of Solid–State Circuits, 26:1321–1324.

Parikh, C. and Patel, P. (2007). Iperformance evaluation of aes algorithm on various development platforms. In Proceedings of ISCE’07, pages 1–6.
Publicado
19/11/2012
BESROUR, Hedi; MESQUITA, Daniel Gomes; MOHSEN, Machhout; RACHED, Tourki. Modified Current Mask Generation (M-CMG): An Improved Countermeasure Against Differential Power Analysis Attacks. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 12. , 2012, Curitiba. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2012 . p. 210-220. DOI: https://doi.org/10.5753/sbseg.2012.20547.