Reducing the Ciphertext Size of Dolev-Dwork-Naor like Public Key Cryptosystems
Resumo
We show a method for compressing the ciphertext and reducing the computational cost of the Dolev-Dwork-Naor cryptosystem and related schemes without changing their other parameters nor reducing the original security levels.
Referências
D. Dolev, C. Dwork, M. Naor. Non-malleable Cryptography. SIAM J. Comput. 30(2): 391-437 (2000).
R. Dowsley and J. Müller-Quade and A. C. A. Nascimento, A CCA2 Secure Public Key Encryption Scheme Based on the McEliece Assumptions in the Standard Model, CT-RSA 2009, Also available from http://eprint.iacr.org/2008/468
S. Goldwasser, S. Micali: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2): 270-299 (1984).
G. Hanaoka, H. Imai, K. Ogawa, H. Watanabe: Chosen Ciphertext Secure Public Key Encryption with a Simple Structure. IWSEC 2008: 20-33
D. Hofheinz, E. Kiltz. Secure Hybrid Encryption from Weakened Key Encapsulation. CRYPTO 2007: 553-571.
J. Katz. Lecture Notes. Available at [link].
Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryption under General Assumptions. EUROCRYPT 2003. pp. 241-254. 2003.
M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applications. In 21st STOC, pages 3343, 1989.
R. Pass, A. Shelat, V. Vaikuntanathan: Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. CRYPTO 2006: 271-289
C. Peikert, B. Waters. Lossy trapdoor functions and their applications. STOC 2008. pp. 187-196. 2008.
C. Rackoff, D. R. Simon: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. CRYPTO 1991: 433-444.
A. Rosen and G. Segev. Chosen-Ciphertext Security via Correlated Products. Available at http://eprint.iacr.org/2008/116. 2008.
A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen - Ciphertext Security. In 40th FOCS, pages 543-553, 1999.
R. Dowsley and J. Müller-Quade and A. C. A. Nascimento, A CCA2 Secure Public Key Encryption Scheme Based on the McEliece Assumptions in the Standard Model, CT-RSA 2009, Also available from http://eprint.iacr.org/2008/468
S. Goldwasser, S. Micali: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2): 270-299 (1984).
G. Hanaoka, H. Imai, K. Ogawa, H. Watanabe: Chosen Ciphertext Secure Public Key Encryption with a Simple Structure. IWSEC 2008: 20-33
D. Hofheinz, E. Kiltz. Secure Hybrid Encryption from Weakened Key Encapsulation. CRYPTO 2007: 553-571.
J. Katz. Lecture Notes. Available at [link].
Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryption under General Assumptions. EUROCRYPT 2003. pp. 241-254. 2003.
M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applications. In 21st STOC, pages 3343, 1989.
R. Pass, A. Shelat, V. Vaikuntanathan: Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. CRYPTO 2006: 271-289
C. Peikert, B. Waters. Lossy trapdoor functions and their applications. STOC 2008. pp. 187-196. 2008.
C. Rackoff, D. R. Simon: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. CRYPTO 1991: 433-444.
A. Rosen and G. Segev. Chosen-Ciphertext Security via Correlated Products. Available at http://eprint.iacr.org/2008/116. 2008.
A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen - Ciphertext Security. In 40th FOCS, pages 543-553, 1999.
Publicado
11/10/2010
Como Citar
DOWSLEY, Rafael; HANAOKA, Goichiro; IMAI, Hideki; NASCIMENTO, Anderson C. A..
Reducing the Ciphertext Size of Dolev-Dwork-Naor like Public Key Cryptosystems. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 10. , 2010, Fortaleza.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2010
.
p. 395-404.
DOI: https://doi.org/10.5753/sbseg.2010.20602.