Estudos de otimização do algoritmo de criptografia pós-quântica CRYSTALS-KYBER
Resumo
O desenvolvimento de computadores quânticos se aproxima cada vez mais da realidade e, com isso, os algoritmos de chave pública empregados na indústria estão ameaçados. Nos últimos anos, o National Institute of Standards and Technology (NIST) vem promovendo uma avaliação de propostas de algoritmos resistentes ao ataque de computadores quânticos. Todas elas, no entanto, demandam alto poder computacional e/ou exigem chaves de grandes dimensões. Este artigo descreve um estudo sobre possíveis otimizações no algoritmo CRYSTALS-KYBER, candidato da terceira rodada de avaliações do NIST, buscando reduzir seu consumo de memória e tempo de processamento tanto em plataformas Intel i5 como ARM Cortex M0+.
Palavras-chave:
criptografia, algoritmos pós-quânticos, segurança da informação, IoT
Referências
Shor, P. (1997), “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”, SIAM Journal on Computing.
Micciancio, D., Regev, O. (2008), “Lattice-based cryptography”, CSE Department, University of California, San Diego.
Goldreich, O., Goldwasser, S. & Halevi, S. (1997), “Public-key cryptosystems from lattice reduction problems”, Lecture Notes in Computer Science, vol. 1294.
Regev, O. (2005), “The Learning with Errors Problem”, Courant Institute of Mathematical Sciences, New York University.
Moody, D. (2021), “NIST Status Update on the 3rd Round”, Cryptography Technology Group, National Institute of Standards and Technology.
Bogdanov, D. (2005), “IND-CCA2 secure cryptosystems”, University of Tartu.
Albrecht, M., Deo, M. (2017), “Large Modulus Ring-LWE = Module-LWE”, Information Security Group, Royal Holloway, University of London.
Hofhein, D., Hövelmanns, K. & Kiltz, E. (2017), “A Modular Analysis of the Fujisaki-Okamoto Transformation”, Karlsruhe Institute of Technology.
May, W. (2015), “SHA-3 Standard: Permutation-Based and Extendable-Output Functions”, Federal Information Processing Standards Publication, National Institute of Standards and Technology.
Hedge, S., Nagapadma, R. (2019), “Number Theoretic Transform for Fast Digital Computation”, Department of Electronic and Communication Engineering, NIE Institute of Technology.
Avanzi, R. et al. (2021), “CRYSTALS-Kyber - Submission to round 3 of the NIST post-quantum project”, https://pq-crystals.org/kyber/resources.shtml, January.
Bertoni, G et al. (2011), “The Keccak reference”, Submission to the NIST SHA-3 Competition, https://keccak.team/files/Keccak-reference-3.0.pdf, January.
Langley, A. (2017), “Maybe Skip SHA-3”, Blog post on ImperialViolet https://www.imperialviolet.org/2017/05/31/skipsha3.html, May.
Bertoni, G. et al. (2017), “Is SHA-3 slow?”, Blog post on KeccakTeam, https://keccak.team/2017/is_sha3_slow.html, June.
Kannwischer, M. et al. (2019), “pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4”, Radboud University, Netherlands.
Micciancio, D., Regev, O. (2008), “Lattice-based cryptography”, CSE Department, University of California, San Diego.
Goldreich, O., Goldwasser, S. & Halevi, S. (1997), “Public-key cryptosystems from lattice reduction problems”, Lecture Notes in Computer Science, vol. 1294.
Regev, O. (2005), “The Learning with Errors Problem”, Courant Institute of Mathematical Sciences, New York University.
Moody, D. (2021), “NIST Status Update on the 3rd Round”, Cryptography Technology Group, National Institute of Standards and Technology.
Bogdanov, D. (2005), “IND-CCA2 secure cryptosystems”, University of Tartu.
Albrecht, M., Deo, M. (2017), “Large Modulus Ring-LWE = Module-LWE”, Information Security Group, Royal Holloway, University of London.
Hofhein, D., Hövelmanns, K. & Kiltz, E. (2017), “A Modular Analysis of the Fujisaki-Okamoto Transformation”, Karlsruhe Institute of Technology.
May, W. (2015), “SHA-3 Standard: Permutation-Based and Extendable-Output Functions”, Federal Information Processing Standards Publication, National Institute of Standards and Technology.
Hedge, S., Nagapadma, R. (2019), “Number Theoretic Transform for Fast Digital Computation”, Department of Electronic and Communication Engineering, NIE Institute of Technology.
Avanzi, R. et al. (2021), “CRYSTALS-Kyber - Submission to round 3 of the NIST post-quantum project”, https://pq-crystals.org/kyber/resources.shtml, January.
Bertoni, G et al. (2011), “The Keccak reference”, Submission to the NIST SHA-3 Competition, https://keccak.team/files/Keccak-reference-3.0.pdf, January.
Langley, A. (2017), “Maybe Skip SHA-3”, Blog post on ImperialViolet https://www.imperialviolet.org/2017/05/31/skipsha3.html, May.
Bertoni, G. et al. (2017), “Is SHA-3 slow?”, Blog post on KeccakTeam, https://keccak.team/2017/is_sha3_slow.html, June.
Kannwischer, M. et al. (2019), “pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4”, Radboud University, Netherlands.
Publicado
04/10/2021
Como Citar
FERRO, Luiz F. C.; RAMPAZZO, Felipe J. A.; HENRIQUES, Marco A. A..
Estudos de otimização do algoritmo de criptografia pós-quântica CRYSTALS-KYBER. In: WORKSHOP DE TRABALHOS DE INICIAÇÃO CIENTÍFICA E DE GRADUAÇÃO - SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 21. , 2021, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 205-218.
DOI: https://doi.org/10.5753/sbseg_estendido.2021.17353.