Fifteen years of process mining in Brazil: Current contributions, most used techniques, and challenges

  • Tassiane Giacomelli Dinkowski UFRGS
  • Diego Toralles Avila UFRGS
  • Lucinéia Heloisa Thom UFRGS

Resumo


Context: Process mining is a discipline that combines data science (data mining) and process science (Business Process Management - BPM), which has become crucial for large organizations as it enables the discovery, maintenance, and improvement of business processes. Problem: In the context of process mining in Brazil, there is a gap in the consolidated knowledge about the state of the art and the main topics being discussed. Solution: This study aims to understand what are the most frequent process mining techniques and challenges discussed within Brazilian research and the contributions to the advancement of the discipline in the country. IS Theory: This study was conceived under the aegis of Argumentation Theory, presenting information and evidence on selected studies and the results discussed. Method: A systematic literature review (SLR) from the last 15 years on process mining in Brazil was carried out, considering studies with Brazilian affiliation and using searches in scientific databases. Summary of Results: Through the analysis of 153 studies, we identified 9 different groups regarding Brazilian contributions to the advancement of the discipline in the country. By examining the results obtained, the methods applied, and the findings presented in the studies included on the SLR, we identified the most commonly used process mining technique in national research, as well as the main challenges cited by Brazilian authors, notably the need to address log quality. Contributions and Impact in the IS area: This study increases visibility of the current state of process mining research in Brazil in order to highlight new research opportunities within the Brazilian market.

Palavras-chave: Process mining, Brazil, Business Process Management, Systematic literature review, contributions, challenges

Referências

Wil Aalst and Schahram Dustdar. 2012. Process Mining Put into Context. IEEE Internet Computing 16 (01 2012), 82–86. DOI: 10.1109/MIC.2012.12

Katsiaryna Akhramovich, Estefanía Serral, and Carlos Cetina. 2024. A systematic literature review on the application of process mining to Industry 4.0. Knowl Inf Syst 66, 5 (May 2024), 2699–2746. DOI: 10.1007/s10115-023-02042-x

Fábio Bezerra and Jacques Wainer. 2013. Algorithms for anomaly detection of traces in logs of process aware information systems. Information Systems 38, 1 (2013), 33–44. DOI: 10.1016/j.is.2012.04.004

Paolo Ceravolo, Ernesto Damiani, Mohammadsadegh Torabi, and Sylvio Barbon. 2017. Toward a new generation of log pre-processing methods for process mining. Lecture Notes in Business Information Processing 297 (2017), 55 – 70. DOI: 10.1007/978-3-319-65015-9_4

Juan G. Colonna, Ahmed A. Fares, Márcio Duarte, and Ricardo Sousa. 2024. Process mining embeddings: Learning vector representations for Petri nets. Intelligent Systems with Applications 23 (Sept. 2024), 200423. DOI: 10.1016/j.iswa.2024.200423

Marcelo Rosano Dallagassa, Cleiton Dos Santos Garcia, Edson Emilio Scalabrin, Sergio Ossamu Ioshii, and Deborah Ribeiro Carvalho. 2022. Opportunities and challenges for applying process mining in healthcare: a systematic mapping study. Journal of Ambient Intelligence and Humanized Computing 13 (Jan. 2022), 165–182. DOI: 10.1007/s12652-021-02894-7

Raphael J. D’Castro, Adriano L. I. Oliveira, and Augusto H. Terra. 2018. Process Mining Discovery Techniques in a Low-Structured Process Works?. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, Sao Paulo, Brazil, 200–205. DOI: 10.1109/BRACIS.2018.00042

Alef Berg De Oliveira, André Luiz Micosky, Cleiton Ferreira Dos Santos, Eduardo De Freitas Rocha Loures, and Eduardo Alves Portela Santos. 2024. A Hybrid Model to Support Decision Making in Manufacturing. In Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems, Francisco J. G. Silva, António B. Pereira, and Raul D. S. G. Campilho (Eds.). Springer Nature Switzerland, Cham, 651–658. Series Title: Lecture Notes in Mechanical Engineering. DOI: 10.1007/978-3-031-38241-3_73

Rafael de Sousa and Sarajane Peres. 2020. Online concept drift detection, localization and characterization using trace clustering. In Anais Estendidos do XVI Simpósio Brasileiro de Sistemas de Informação (Evento Online). SBC, Porto Alegre, RS, Brasil, 35–39. DOI: 10.5753/sbsi.2020.13122

Rafael Gaspar de Sousa, Antonio Carlos Meira Neto, Marcelo Fantinato, Sarajane Marques Peres, and Hajo Alexander Reijers. 2024. Integrated detection and localization of concept drifts in process mining with batch and stream trace clustering support. DATA & KNOWLEDGE ENGINEERING 149 (JAN 2024), 102253. DOI: 10.1016/j.datak.2023.102253

Rafael Gaspar de Sousa, Sarajane Marques Peres, Marcelo Fantinato, and Hajo Alexander Reijers. 2021. Concept Drift Detection and Localization in Process Mining: An Integrated and Efficient Approach Enabled by Trace Clustering. In Proceedings of the 36th Annual ACM Symposium on Applied Computing. Association for Computing Machinery, New York, NY, USA, 364–373. DOI: 10.1145/3412841.3441918

Gyslla Santos de Vasconcelos, Flavia Bernardini, and José Viterbo. 2024. A Comparison Between the Most Used Process Mining Tools in the Market and in Academia: Identifying the Main Features Based on a Qualitative Analysis. Lecture Notes in Networks and Systems 800 (2024), 218 – 228. DOI: 10.1007/978-3-031-45645-9_21

Gert-Jan De Vries, Ricardo Alfredo Quintano Neira, Gijs Geleijnse, Prabhakar Dixit, and Bruno Franco Mazza. 2017. Towards process mining of EMR data case study for sepsis management, In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies. HEALTHINF 2017 - 10th International Conference on Health Informatics, Proceedings; Part of 10th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2017 5 (2017), 585–593. DOI: 10.5220/0006274405850593

Renan Ribeiro Do Prado, Pedro Antonio Boareto, Joceir Chaves, and Eduardo Alves Portela Santos. 2023. Agile DMAIC cycle: incorporating process mining and support decision. INTERNATIONAL JOURNAL OF LEAN SIX SIGMA 15 (2023 OCT 3 2023), 614 – 641. DOI: 10.1108/IJLSS-04-2022-0092

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. 2018. Fundamentals of Business Process Management. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-662-56509-4

Najah Mary El-Gharib and Daniel Amyot. 2023. Robotic process automation using process mining — A systematic literature review. Data & Knowledge Engineering 148 (2023), 102229. DOI: 10.1016/j.datak.2023.102229

Marcelo Fantinato, Sarajane Marques Peres, and Hajo A. Reijers. 2021. X-Processes: Discovering More Accurate Business Process Models with a Genetic Algorithms Method. In 2021 IEEE 25th International Enterprise Distributed Object Computing Conference (EDOC). IEEE, Gold Coast, Australia, 114–123. DOI: 10.1109/EDOC52215.2021.00022

Marcelo Fantinato, Sarajane Marques Peres, and Hajo A. Reijers. 2023. XProcesses: Process model discovery with the best balance among fitness, precision, simplicity, and generalization through a genetic algorithm. Information Systems 119 (2023), 102247. DOI: 10.1016/j.is.2023.102247

Alexandre Gastaldi Lopes Fernandes, Thais Rodrigues Neubauer, Marcelo Fantinato, and Sarajane Marques Peres. 2023. Impact of Non-Fitting Cases for Remaining Time Prediction in a Multi-Attribute Process-Aware Method, In CI4PM/PAI@ WCCI. CEUR Workshop Proceedings 3350 (2023), 33 – 45.

Jair Jose Ferronato, Edson Emilio Scalabrin, and Deborah Ribeiro Carvalho. 2022. PM4SOS: low-effort resource allocation optimization in a dynamic environment. In 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, Prague, Czech Republic, 1742–1747. DOI: 10.1109/SMC53654.2022.9945393

Cleiton dos Santos Garcia, Alex Meincheim, Fernando C. Garcia Filho, Eduardo Alves Portela Santos, and Edson Emilio Scalabrin. 2019. Getting Insights to Improve Business Processes with Agility: A Case Study Using Process Mining. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, Bari, Italy, 1336–1343. DOI: 10.1109/SMC.2019.8914534

Ricardo Gerhardt, João F. Valiati, and José Vicente Canto dos Santos. 2018. An Investigation to Identify Factors that Lead to Delay in Healthcare Reimbursement Process: A Brazilian case. Big Data Research 13 (2018), 11–20. [link]. Big Medical/Healthcare Data Analytics.

Joao Carlos de A.R. Goncalves, Flavia Maria Santoro, and Fernanda Araujo Baiao. 2009. Business process mining from group stories. In 2009 13th International Conference on Computer Supported Cooperative Work in Design. IEEE, Santiago, Chile, 161–166. DOI: 10.1109/CSCWD.2009.4968052

Barbara Ann Kitchenham and Stuart Charters. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001. Keele University and Durham University Joint Report.

Artini M. Lemos, Caio C. Sabino, Ricardo M. F. Lima, and Cesar A. L. Oliveira. 2011. Using process mining in software development process management:Acase study. In 2011 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, Anchorage, AK, USA, 1181–1186. DOI: 10.1109/ICSMC.2011.6083858

Paulo Victor Lopes, Giovanni Lugaresi, Filipe Alves Neto Verri, and Anders Skoogh. 2024. PROCESS MINING AND PRODUCTION ROUTING FAST PROFILING FOR DATA-DRIVEN DIGITAL TWINS, In ECMS 2024 Proceedings edited by Daniel Grzonka, Natalia Rylko, Grazyna Suchacka, Vladimir Mityushev, Grzonka D., Rylko N., Suchacka G., and Mityushev V. (Eds.). Proceedings - European Council for Modelling and Simulation, ECMS 38, 1 (2024), 171 – 177.

Ana Maita, Marcelo Fantinato, Sarajane Peres, and Fabrizio Maggi. 2023. Towards a Business-Oriented Approach to Visualization-Supported Interpretability of Prediction Results in Process Mining:. In Proceedings of the 25th International Conference on Enterprise Information Systems. SCITEPRESS - Science and Technology Publications, Prague, Czech Republic, 395–406. DOI: 10.5220/0011976000003467

Ana Rocío Cárdenas Maita, Marcelo Fantinato, Sarajane Marques Peres, and Fabrizio Maria Maggi. 2024. Supporting Interpretability in Predictive Process Monitoring Using Process Maps. Lecture Notes in Business Information Processing 518 LNBIP (2024), 230 – 246. DOI: 10.1007/978-3-031-64748-2_11

Azumah Mamudu, Wasana Bandara, Moe T. Wynn, and Sander J. J. Leemans. 2024. Process Mining Success Factors and Their Interrelationships. Bus Inf Syst Eng (March 2024). DOI: 10.1007/s12599-024-00860-z

Thais Neubauer, Renata Araujo, Marcelo Fantinato, and Sarajane Peres. 2022. Transparency promoted by process mining: an exploratory study in a public health product management process. In Anais do X Workshop de Computação Aplicada em Governo Eletrônico (Niterói). SBC, Porto Alegre, RS, Brasil, 37–48. DOI: 10.5753/wcge.2022.223131

Thais Rodrigues Neubauer, Alexandre Gastaldi Lopes Fernandes, Marcelo Fantinato, and Sarajane Marques Peres. 2023. Interactive Trace Clustering to Enhance Incident Completion Time Prediction in Process Mining. CEUR Workshop Proceedings 3350 (2023), 8 – 20.

Fabio Pegoraro, Eduardo Alves Portela Santos, Eduardo de Freitas Rocha Loures, and Fernanda Wanka Laus. 2023. Integrating process mining and simulation to support patient flow management in Emergency Departments. REVISTA DE GESTAO E SECRETARIADO-GESEC 14, 4 (2023), 6260–6274.

Gustavo Bernardi Pereira, Eduardo Alves Portela Santos, and Marcell Mariano Corrêa Maceno. 2020. Correction to: Process mining project methodology in healthcare: a case study in a tertiary hospital. Network Modeling Analysis in Health Informatics and Bioinformatics 9 (Dec. 2020), 44. DOI: 10.1007/s13721-020-00247-6

Sarajane M Peres, Marcelo Fantinato, and Eduardo Alves Portela Santos. 2023. Mineração de Processos: do que se trata? E o Brasil, está no jogo? Computação Brasil 49 (2023), 6–9.

Wilson Portela, Márcio Fontana Catapan, and Fernando Deschamps. 2022. PROCESS MINING IN AUTOMOTIVE DEALERSHIPS: CASE STUDY, ANALYSIS AND BUSINESS; [MINERAÇÃO DE PROCESSOS EM CONCESSIONARIAS DA INDÚSTRIA AUTOMOTIVA: ESTUDO DE CASO, ANÁLISE E NEGÓCIO]. International Journal of Professional Business Review 7 (Nov. 2022), e0963. DOI: 10.26668/businessreview/2022.v7i4.963

Ricardo Alfredo Quintano Neira, Bart Franciscus Antonius Hompes, J. Gert-Jan De Vries, Bruno F. Mazza, Samantha L. Simões De Almeida, Erin Stretton, Joos C. A. M. Buijs, and Silvio Hamacher. 2019. Analysis and Optimization of a Sepsis Clinical Pathway Using Process Mining. In Business Process Management Workshops, Chiara Di Francescomarino, Remco Dijkman, and Uwe Zdun (Eds.). Vol. 362. Springer International Publishing, Cham, 459–470. Series Title: Lecture Notes in Business Information Processing. DOI: 10.1007/978-3-030-37453-2_37

Gustavo Riz, Eduardo Santos, and Eduardo Loures. 2016. Análise de Conformidade na Área de Saúde com o Suporte da Mineração de Processos. In Anais do XII Simpósio Brasileiro de Sistemas de Informação (Florianópolis). SBC, Porto Alegre, RS, Brasil, 052–059. DOI: 10.5753/sbsi.2016.5945

Marcio Romero, Renato José Sassi, João Rafael Gonçalves Evangelista, and Dacyr Dante de Oliveira Gatto. 2020. A bibliographical survey on enterprise architecture with togaf and process mining to support organizational change in information technology projects; [Um levantamento bibliográfico sobre arquitetura corporativa com togaf e mineração de processos no apoio à mudança organizacional em projetos de tecnologia da informação]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2020 (2020), 579 – 591.

Edson Ruschel, Eduardo Alves Portela Santos, and Eduardo De Freitas Rocha Loures. 2020. Establishment of maintenance inspection intervals: an application of process mining techniques in manufacturing. Journal of Intelligent Manufacturing 31 (Jan. 2020), 53–72. DOI: 10.1007/s10845-018-1434-7

Flavia Maria Santoro, Kate Cerqueira Revoredo, Rosa M.M. Costa, and Thais Mester Barboza. 2020. Process Mining Techniques in Internal Auditing: A Stepwise Case Study. iSys - Brazilian Journal of Information Systems 13, 4 (Jul. 2020), 48–76. DOI: 10.5753/isys.2020.823

Luiz Schirmer, Leonardo Quatrin Campagnolo, Sonia Fiol González, Ariane M. B. Rodrigues, Guilherme G. Schardong, Rafael França, Mauricio Lana, Simone D. J. Barbosa, Marcus Poggi, and Hélio Lopes. 2018. Visual Support to Filtering Cases for Process Discovery:. In Proceedings of the 20th International Conference on Enterprise Information Systems. SCITEPRESS - Science and Technology Publications, Funchal, Madeira, Portugal, 38–49. DOI: 10.5220/0006708200380049

Fernanda Aparecida Rocha Silva. 2018. Analytical intelligence in processes: Data science for business. IEEE Latin America Transactions 8 (2018), 2240 – 2247.

Gabriel Marques Tavares, Paolo Ceravolo, Victor G. Turrisi Da Costa, Ernesto Damiani, and Sylvio Barbon Junior. 2019. Overlapping Analytic Stages in Online Process Mining. In 2019 IEEE International Conference on Services Computing (SCC). IEEE, Milan, Italy, 167–175. DOI: 10.1109/SCC.2019.00037

Wil Van Der Aalst. 2016. Process mining: data science in action. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-662-49851-4

Wil Van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco Arcieri, and Thomas etc... Baier. 2012. Process Mining Manifesto. In Business Process ManagementWorkshops. Springer Berlin Heidelberg, Berlin, Heidelberg, 169–194.

Luiz Vercosa, Carmelo Bastos-Filho, and Byron Bezerra. 2023. An Approach for Analysing Law Processes based on Hierarchical Activities and Clustering. In 2023 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE, Recife-Pe, Brazil, 1–6. DOI: 10.1109/LA-CCI58595.2023.10409389

Mathias Weske. 2012. Business Process Management: Concepts, Languages, Architectures. Springer Berlin Heidelberg, Berlin, Heidelberg. 333–371 pages. DOI: 10.1007/978-3-642-28616-2_7

Pierluigi Zerbino, Alessandro Stefanini, and Davide Aloini. 2021. Process Science in Action: A Literature Review on Process Mining in Business Management. Technological Forecasting and Social Change 172 (2021), 121021. DOI: 10.1016/j.techfore.2021.121021
Publicado
19/05/2025
DINKOWSKI, Tassiane Giacomelli; AVILA, Diego Toralles; THOM, Lucinéia Heloisa. Fifteen years of process mining in Brazil: Current contributions, most used techniques, and challenges. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 21. , 2025, Recife/PE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 409-418. DOI: https://doi.org/10.5753/sbsi.2025.246519.