MIDAS: A Middleware to Provide Interoperability between SaaS and DaaS

  • Tarcio Marinho Universidade Federal da Bahia
  • Vinicius Cidreira Universidade Federal da Bahia
  • Daniela Barreiro Claro Universidade Federal da Bahia
  • Babacar Mane Universidade Federal da Bahia

Resumo


Software as a Service (SaaS) and Data as a Service (DaaS) proves to be two promising areas of research in the cloud computing field, however interoperability among different cloud providers is yet poorly explored. Today, clients looking for content or services from different providers need extra time and resources to learn and implement the required adaptations from the other parties. In this paper we propose MIDAS, a novel middleware to interoperate SaaS and DaaS services seamlessly and independently from provider. That is, SaaS applications will be able to get data from DaaS datasets by sending a query to our middleware and letting it mediate the communication and return the expected results. We evaluate our proposal by developing a prototype from two case studies and by analyzing the time effort to query through our middleware. Our results presented that no important overhead were required from providers nor to the final user.

Palavras-chave: Cloud Interoperability, Middleware, DaaS, SaaS

Referências

M. N. Antunes, C. H. d. Silva, M. C. S. Guimarães, and M. H. L. Rabaco. Monitoramento de informação em mídias sociais: o e-Monitor Dengue. Transinformação, 26:9–18, 2014.

G. Calvet, R. S. Aguiar, A. S. O. Melo, S. A. Sampaio, I. de Filippis, A. Fabri, E. S. M. Araujo, P. C. de Sequeira, M. C. L. de Mendonça, L. de Oliveira, D. A. Tschoeke, C. G. Schrago, F. L. Thompson, P. Brasil, F. B. dos Santos, R. M. R. Nogueira, A. Tanuri, and A. M. B. de Filippis. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. The Lancet Infectious Diseases, pages 1–8, 2016.

J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Sadeh. Bridging the Gap Between Physical Location and Online Social Networks. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing, UbiComp ’10, pages 119–128, New York, NY, USA, 2010. ACM.

P. G. A. de Mendonça, C. Maciel, and J. V. Filho. Visualizing aedes aegypti infestation in urban areas: A case study on open government data mashups. In Proceedings of the 15th Annual International Conference on Digital Government Research, dg.o ’14, pages 186–191, New York, NY, USA, 2014. ACM.

H. B. M. Diniz, E. C. G. F. Silva, and K. S. da Gama. A reference architecture for a crowdsensing platform in smart cities. In Proceedings of the Annual Conference on Brazilian Symposium on Information Systems, SBSI 2015, pages 13:87–13:94, Porto Alegre, Brazil, 2015. Brazilian Computer Society.

L. Eisen and S. Lozano-Fuentes. Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. PLoS Negl Trop Dis, 3(4):e411, 2009.

A. G. R. Falcão, C. d. S. Baptista, and L. d. Menezes. Crowd4City: utilizando sensores humanos como fonte de dados em cidades inteligentes. In Proceedings of the Annual Conference on Brazilian Symposium on Information Systems, SBSI 2012, pages 144–149, São Paulo, Brazil, 2012. Brazilian Computer Society.

J. Gomide, A. Veloso, W. Meira, Jr., V. Almeida, F. Benevenuto, F. Ferraz, and M. Teixeira. Dengue Surveillance Based on a Computational Model of Spatio-temporal Locality of Twitter. In Proceedings of the 3rd International Web Science Conference, WebSci’11, pages 3:1–3:8, New York, NY, USA, 2011. ACM.

M. F. Goodchild. Citizens as voluntary sensors: spatial data infrastructure in the world of web 2.0. International Journal of Spatial Data Infrastructures Research, 2:24–32, 2007.

M. Haklay and P. Weber. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4):12–18, 2008.

E. Reddy, S. Kumar, N. Rollings, and R. Chandra. Mobile application for dengue fever monitoring and tracking via GPS: case study for fiji. CoRR, abs/1503.00814, 2015.

Secretaria de Vigilˆancia em Saúde, Ministério da Saúde, Brasil. Boletim Epidemiológico. 47(3), 2016. Disponível em: http://portalsaude.saude.gov.br/images/pdf/2016/janeiro/15/svs2016-be003-dengue-se52.pdf.

A. Signorini, A. M. Segre, and P. M. Polgreen. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic. PLoS ONE, 6(5):e19467, 2011.

A. Stefanidis, A. Crooks, and J. Radzikowski. Harvesting ambient geospatial information from social media feeds. GeoJournal, 78(2):319–338, 2013.

J. Surowiecki. The Wisdom of Crowds. Knopf Doubleday Publishing Group, 2005.

N. Walravens. Validating a Business Model Framework for Smart City Services: The Case of FixMyStreet. In Proceedings of the 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pages 1355–1360, 2013.

Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban Computing: Concepts, Methodologies, and Applications. ACM Trans. Intell. Syst. Technol, 5(3):1–55, 2014.
Publicado
17/05/2016
MARINHO, Tarcio; CIDREIRA, Vinicius; CLARO, Daniela Barreiro; MANE, Babacar. MIDAS: A Middleware to Provide Interoperability between SaaS and DaaS. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 12. , 2016, Florianópolis. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2016 . p. 401-408. DOI: https://doi.org/10.5753/sbsi.2016.5988.

Artigos mais lidos do(s) mesmo(s) autor(es)