Gestão do conhecimento, aprendizagem móvel e direito do consumidor: estratégia para acesso à informação
Resumo
Este estudo tem por objetivo apresentar os resultados de pesquisa realizada sobre a utilização da gestão do conhecimento atrelada a tecnologia móvel para a promoção dos direitos do consumidor. A utilização das informações por meio da aprendizagem móvel resultou em um aplicativo que disponibiliza a informação na temática estudada ao mesmo tempo em que promove acesso aos serviços da delegacia do consumidor de Pernambuco e outros órgãos de defesa dos direitos deste consumidor. Além deste, uma cartilha informativa foi desenvolvida e disponibilizada para que possa ser impressa e ser utilizada em um curso na modalidade a distância, por meio de um ambiente virtual de aprendizagem, a profissionais de segurança pública da região metropolitana do Recife e interior do estado de Pernambuco.
Referências
Bouakkaz, Mustapha, Sabile Loudcher, and Youcef Ouinten. "OLAP textual aggregation approach using the Google similarity distance." International Journal of Business Intelligence and Data Mining 11.1 (2016): 31-48.
Wang, Chi, et al. A phrase mining framework for recursive construction of a topical hierarchy. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2013.
Cuzzocrea, A., De Maio, C., Fenza, G., Loia, V. and Parente, M. 2016. OLAP Analysis of Multidimensional Tweet Streams for Supporting Advanced Analytics. Proceedings of the 31st Annual ACM Symposium on Applied Computing (New York, NY, USA, 2016), 992–999.
Ding, B., Zhao, B., Lin, C.X., Han, J., Zhai, C.X., Srivastava, A. and Oza, N.C. 2011. Efficient KeywordBased Search for Top-K Cells in Text Cube. IEEE Transactions on Knowledge and Data Engineering. 23, 12 (Dec. 2011), 1795–1810.
Gray, Jim, et al. "Data cube: A relational aggregation operator generalizing group-by, cross-tab, and subtotals." Data mining and knowledge discovery 1.1 (1997): 29-53.
Huang, Anna. "Similarity measures for text document clustering." Proceedings of the sixth new zealand computer science research student conference (NZCSRSC2008), Christchurch, New Zealand. 2008.
Janet, B. and Reddy, A.V. 2010. Cube Index: A Text Index Model for Retrieval and Mining. International Journal of Computer Applications. 1, 9 (Feb. 2010), 84–89.
Janet, B. and Reddy, A.V. 2011. Cube Index for Unstructured Text Analysis and Mining. Proceedings of the 2011 International Conference on Communication, Computing & Security (New York, NY, USA, 2011), 397– 402.
Lauw, H.W., Lim, E.-P. and Pang, H. 2007. TUBE (TextcUBE) for Discovering Documentary Evidence of Associations Among Entities. Proceedings of the 2007 ACM Symposium on Applied Computing (New York, NY, USA, 2007), 824–828.
Lee, S., Kim, N. and Kim, J. 2014. A Multi-dimensional Analysis and Data Cube for Unstructured Text and Social Media. 2014 IEEE Fourth International Conference on Big Data and Cloud Computing (BdCloud) (Dec. 2014), 761– 764.
Li, X., Han, J. and Gonzalez, H. 2004. High-dimensional OLAP: A Minimal Cubing Approach. Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30 (Toronto, Canada, 2004), 528–539.
Lin, C.X., Ding, B., Han, J., Zhu, F. and Zhao, B. 2008. Text Cube: Computing IR Measures for Multidimensional Text Database Analysis. Eighth IEEE International Conference on Data Mining, 2008. ICDM ’08 (Dec. 2008), 905–910.
Liu, X., Tang, K., Hancock, J., Han, J., Song, M., Xu, R., Manikonda, V. and Pokorny, B. 2012. SocialCube: A Text Cube Framework for Analyzing Social Media Data. 2012 International Conference on Social Informatics (SocialInformatics) (Dec. 2012), 252–259.
Oukid, L., Asfari, O., Bentayeb, F., Benblidia, N. and Boussaid, O. 2013. CXT-cube: Contextual Text Cube Model and Aggregation Operator for Text OLAP. Proceedings of the Sixteenth International Workshop on Data Warehousing and OLAP (New York, NY, USA, 2013), 27–32.
Silva, R.R., Lima, J. de C. and Hirata, C.M. 2013. qCube: Efficient integration of range query operators over a high dimension data cube. Journal of Information and Data Management. 4, 3 (Sep. 2013), 469.
Sun, Y., Yu, Y. and Han, J. 2009. Ranking-based Clustering of Heterogeneous Information Networks with Star Network Schema. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2009), 797–806.
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L. and Su, Z. 2008. ArnetMiner: Extraction and Mining of Academic Social Networks. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2008), 990–998.
Tao, F. et al. 2013. EventCube: Multi-dimensional Search and Mining of Structured and Text Data. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2013), 1494–1497.
Tseng, F.S.C. and Chou, A.Y.H. 2006. The concept of document warehousing for multi-dimensional modeling of textual-based business intelligence. Decision Support Systems. 42, 2 (Nov. 2006), 727–744.
Yu, Y., Lin, C.X., Sun, Y., Chen, C., Han, J., Liao, B., Wu, T., Zhai, C., Zhang, D. and Zhao, B. 2009. iNextCube: Information Network-enhanced Text Cube. Proc. VLDB Endow. 2, 2 (Aug. 2009), 1622–1625.
Zhang, Duo, ChengXiang Zhai, and Jiawei Han. "MiTexCube: MicroTextCluster Cube for Online Analysis of Text Cells." CIDU. 2011.
Zhang, D., Zhai, C. and Han, J. 2009. Topic cube: Topic modeling for olap on multidimensional text databases. In Proc. of the SIAM International Conference on Data Mining (SDM (2009), 1123–1134.
Silva, R. R., Hirata, C. M., & de Castro Lima, J. (2015, April). A Hybrid Memory Data Cube Approach for High Dimension Relations. In ICEIS (1) (pp. 139-149).