Tensorflow vs R: A Comparative Study of Usability

  • Luís Dias Universidade Federal do Vale do São Francisco – UNIVASF
  • Rosalvo Neto Universidade Federal do Vale do São Francisco – UNIVASF

Resumo


Google released on November of 2015 Tensorflow, an open source machine learning framework that can be used to implement Deep Neural Network algorithms, a class of algorithms that shows great potential in solving complex problems. Considering the importance of usability in software success, this research aims to perform a usability analysis on Tensorflow and to compare it with another widely used framework, R. The evaluation was performed through usability tests with university students. The study led do indications that Tensorflow usability is equal or better than the usability of traditional frameworks used by the scientific community.

Palavras-chave: Tensorflow, Usabilidade, Instalabilidade

Referências

E. Angulo, F. P. Romero, R. García, J. Serrano-Guerrero, and J. A. Olivas. A Methodology for the Automatic Regulation of Intersections in Real Time Using Soft-Computing Techniques, pages 379–388. Berlin, Heidelberg, 2008.

A. Barisone, D. Giglio, R. Minciardi, and R. Poggi. A macroscopic trac model for real-time optimization of signalized urban areas. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., volume 1, pages 900–903 vol.1, Dec 2002.

S. G. de Souza Cervantes, J. C. Piai, E. F. F. Ramírez, L. Varasquim, and E. Nagayama. Atefi-um algoritmo para controle semafórico em tempo fixo descentralizado. Semina: Ciências Exatas e Tecnológicas, 30(1):41–50, 2009.
M. B. d. S. de Trânsito. Volume v. Sinalização semafórica, 2007.

R. d. S. dos Santos, W. A. Paquerote, and W. K. da Silva Soares. Simulação de trânsito e semáforos: Um estudo de caso piloto em um trecho no entorno do campus da ufrn. In ANAIS DO XLVII SBPO, 2015.

M. Dotoli, M. P. Fanti, and C. Meloni. Coordination and real time optimization of signal timing plans for urban trac control. In IEEE International Conference on Networking, Sensing and Control, 2004, volume 2, pages 1069–1074, 2004.

D. E. Golberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.
F. S. Hillier. Introduction to operations research. McGraw-Hill, 2006.

L. M. Leemis and S. K. Park. Discrete-event simulation: A first course. Pearson Prentice Hall Upper Saddle River, NJ, 2006.

L. C. F. Lopes. MÉTODO DE OTIMIZAÇÃO DAS DEFASAGENS DE CORREDORES ARTERIAIS. PhD thesis, Universidade Federal do Rio de Janeiro, 2010.

M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang. Review of road trac control strategies. Proceedings of the IEEE, 91(12):2043–2067, Dec 2003.
Publicado
17/05/2017
DIAS, Luís; NETO, Rosalvo. Tensorflow vs R: A Comparative Study of Usability. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 13. , 2017, Lavras. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 96-99. DOI: https://doi.org/10.5753/sbsi.2017.6093.