A self-adaptive IoT architecture to support computational resource allocation in an e-health environment Extended Abstract – CTDSI/2025

  • Mateus G. do Nascimento UFJF
  • José Maria N. David UFJF
  • Mario A. R. Dantas UFJF

Resumo


Intelligent environments are complex interaction spaces between people, sensors, devices, and systems. Software Engineering must tackle the intrinsic characteristics of devices and sensors and complex interactions in intelligent environments to consolidate development practices. This work aims to present a self-adaptive IoT architecture in an intelligent environment and evaluate an information system developed based on the architecture. The proposal concerns how the architecture modules work to develop new information systems. The work was developed through a real-world case study in an intelligent e-health environment. The results showed how a self-adaptive architecture using artificial intelligence can support the development of an information system to manage intelligent e-health spaces.

Referências

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., and Zimmermann, T. (2019). Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 291–300. IEEE.

Fetahu, L., Maraj, A., and Havolli, A. (2022). Internet of things (iot) benefits, future perspective, and implementation challenges. In 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), pages 399–404. IEEE.

Gonçalo do Nascimento, M., Braga, R. M., David, J. M. N., Dantas, M. A. R., and Colugnati, F. A. (2021). Towards an iot architecture to pervasive environments through design science. In International Conference on Advanced Information Networking and Applications, pages 28–39. Springer.

Gonçalo do Nascimento, M., David, J. M. N., Dantas, M. A. R., Villela, R. M. M. B., de Andrade Menezes, V. S., and Colugnati, F. A. B. (2023). An architecture to support the development of collaborative systems in iot context. In 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pages 1722–1727. IEEE.

Gonçalo do Nascimento, M., David, J. M. N., Dantas, M. A. R., Villela, R. M. M. B., de Andrade Menezes, V. S. A self-adaptive IoT architecture to support intelligent environments. In: Simpósio Brasileiro de Engenharia de Software (SBES), 38., 2024, Curitiba/PR. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024. p. 323-333. ISSN 2833-0633. DOI: 10.5753/sbes.2024.3435

Gupta, A., Al-Naime, K., and Al-Anbuky, A. (2021). Iot environment for monitoring human movements: Hip fracture rehabilitation case. In Information and Communication Technologies for Ageing Well and e-Health: 6th International Conference, ICT4AWE 2020, Prague, Czech Republic, May 3–5, 2020, Revised Selected Papers 6, pages 44–63. Springer.

Hevner, A. and Chatterjee, S. (2010). Design science research in information systems. Design research in information systems: theory and practice, pages 9–22.

Motta, R. C., De Oliveira, K. M., and Travassos, G. H. (2018). On challenges in engineering iot software systems. In Proceedings of the XXXII Brazilian symposium on software engineering, pages 42–51.

Weyns, D. (2020). An introduction to self-adaptive systems: A contemporary software engineering perspective. John Wiley & Sons.

Zadtootaghaj, P., Mohammadian, A., Mahbanooei, B., and Ghasemi, R. (2019). Internet of things: A survey for the individuals’ e-health applications. Journal of Information Technology Management, 11(1):102–129.
Publicado
19/05/2025
NASCIMENTO, Mateus G. do; DAVID, José Maria N.; DANTAS, Mario A. R.. A self-adaptive IoT architecture to support computational resource allocation in an e-health environment Extended Abstract – CTDSI/2025. In: CONCURSO DE TESES, DISSERTAÇÕES E TCCS EM SISTEMAS DE INFORMAÇÃO - SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 21. , 2025, Recife/PE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 87-90. DOI: https://doi.org/10.5753/sbsi_estendido.2025.246755.