Automatic Information Extraction from Neurological Assessment Records for Leprosy Cases Using AI
Resumo
Leprosy is a chronic infectious disease that continues to be present in more than 120 countries. In 2023, over 20,000 new cases were reported in Brazil, making it the second most endemic country in the world. The development of new information systems that utilize available clinical records is essential to support decision-making during the treatment of this highly stigmatizing disease. In this study, we present preliminary results demonstrating the feasibility of using YOLO for the automatic recognition of non-textual data from neurological assessments of patients undergoing treatment. Our approach achieved an accuracy of 97.5% in recognizing sensory assessment records used in the Brazilian healthcare system.Referências
Beesetty, R., Reddy, S., Modali, S., Sunkara, G., Dalal, J., Damagathla, J., Banerjee, D., and Venkatachalapathy, M. (2023). Leprosy skin lesion detection: An ai approach using few shot learning in a small clinical dataset. Indian J Lepr, 95:89–102.
De Souza, M. L. M., Lopes, G. A., Branco, A. C., Fairley, J. K., and Fraga, L. A. D. O. (2021). Leprosy screening based on artificial intelligence: Development of a cross-platform app. JMIR mHealth and uHealth, 9(4):e23718.
Frade, M. A. C., Bernardes Filho, F., Silva, C. M. L., Voltan, G., Lima, F. R., Abi-Rached, T. L. C., and de Paula, N. A. (2022). Evaluation of altered patterns of tactile sensation in the diagnosis and monitoring of leprosy using the semmes-weinstein monofilaments. Plos one, 17(8):e0272151.
Guimarães, L. d. S. et al. (2013). Incapacidade física em pessoas afetadas pela hanseníase: estudo após alta medicamentosa.
Organization, W. H. et al. Global leprosy (hansen disease) update, 2023: Elimination of leprosy disease is possible–time to act!. 2024.
Redmon, J. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition.
Secretaria de Vigilância em Saúde, D. d. D. d. C. C. e. I. S. T. (2022). Protocolo clínico e diretrizes terapêuticas da hanseníase.
Slacel, M. (2000). The diagnosis of leprosy among patients with symptoms of peripheral neuropathy without cutaneous lesions. Arq neuropsiquiatr, 58:800–807.
Steyve, N., Steve, P., Ghislain, M., Ndjakomo, S., et al. (2022). Optimized real-time diagnosis of neglected tropical diseases by automatic recognition of skin lesions. Informatics in Medicine Unlocked, 33:101078.
WHO (2023). Leprosy: Key facts.
Yotsu, R. R., Ding, Z., Hamm, J., and Blanton, R. E. (2023). Deep learning for ai-based diagnosis of skin-related neglected tropical diseases: A pilot study. PLOS Neglected Tropical Diseases, 17(8):e0011230.
De Souza, M. L. M., Lopes, G. A., Branco, A. C., Fairley, J. K., and Fraga, L. A. D. O. (2021). Leprosy screening based on artificial intelligence: Development of a cross-platform app. JMIR mHealth and uHealth, 9(4):e23718.
Frade, M. A. C., Bernardes Filho, F., Silva, C. M. L., Voltan, G., Lima, F. R., Abi-Rached, T. L. C., and de Paula, N. A. (2022). Evaluation of altered patterns of tactile sensation in the diagnosis and monitoring of leprosy using the semmes-weinstein monofilaments. Plos one, 17(8):e0272151.
Guimarães, L. d. S. et al. (2013). Incapacidade física em pessoas afetadas pela hanseníase: estudo após alta medicamentosa.
Organization, W. H. et al. Global leprosy (hansen disease) update, 2023: Elimination of leprosy disease is possible–time to act!. 2024.
Redmon, J. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition.
Secretaria de Vigilância em Saúde, D. d. D. d. C. C. e. I. S. T. (2022). Protocolo clínico e diretrizes terapêuticas da hanseníase.
Slacel, M. (2000). The diagnosis of leprosy among patients with symptoms of peripheral neuropathy without cutaneous lesions. Arq neuropsiquiatr, 58:800–807.
Steyve, N., Steve, P., Ghislain, M., Ndjakomo, S., et al. (2022). Optimized real-time diagnosis of neglected tropical diseases by automatic recognition of skin lesions. Informatics in Medicine Unlocked, 33:101078.
WHO (2023). Leprosy: Key facts.
Yotsu, R. R., Ding, Z., Hamm, J., and Blanton, R. E. (2023). Deep learning for ai-based diagnosis of skin-related neglected tropical diseases: A pilot study. PLOS Neglected Tropical Diseases, 17(8):e0011230.
Publicado
19/05/2025
Como Citar
MELO, Jamilly Braga; MILITÃO, Anthony Alexandre Morais; ENDO, Patricia Takako; ANDRADE, Hilson Gomes Vilar de.
Automatic Information Extraction from Neurological Assessment Records for Leprosy Cases Using AI. In: TRILHA DE TEMAS, IDEIAS E RESULTADOS EMERGENTES EM SISTEMAS DE INFORMAÇÃO - SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 21. , 2025, Recife/PE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 359-365.
DOI: https://doi.org/10.5753/sbsi_estendido.2025.246799.
