Scaling up Cast Face Detection in Videos at Globo

  • Felipe A. Ferreira PUC-Rio / Globo
  • Bruno P. Oliveira Globo
  • Rodrigo V. Kassick Globo
  • Vinícius Furlan Globo
  • Hélio Lopes PUC-Rio


It has been recognized that a significant increase in the production and consumption of video content occurred in the last decade. Many entertainment companies, like Globo, face challenges regarding video metadata generation. The objective of this paper is to present a suitable architecture for the Globo Group to automatically identify actors that appear in each scene of a video stream, generating new metadata annotations that can be used by recommender systems and search engines among different other applications in this industry sector.
Palavras-chave: computer vision, face recognition, video metadata


Castellano, B. (2012). Pyscenedetect.Journal Title, 13(52):123–456.

Pena, R.; Ferreira, F. A.; Caroli, F.; Silva, L. J. S.; and Lopes, H. (2020). Globo facestream: A system for video meta-data generation in an entertainment industry setting. In ICEIS 2020.

Sax, M. J. (2019). Apache kafka. In Sakr, S. and Zomaya, A. Y., editors, Encyclopedia of Big Data Technologies. Springer.

Schroff, F.; Kalenichenko, D.; and Philbin, J. (2015). Facenet: A unified embedding forface recognition and clustering. CoRR, abs/1503.03832
Como Citar

Selecione um Formato
FERREIRA, Felipe A.; OLIVEIRA, Bruno P.; KASSICK, Rodrigo V.; FURLAN, Vinícius; LOPES, Hélio. Scaling up Cast Face Detection in Videos at Globo. In: SEMINÁRIO INTEGRADO DE SOFTWARE E HARDWARE (SEMISH), 48. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 139-143. ISSN 2595-6205. DOI: