Sentiment analysis with convolutional neural network: an investigation of the motivational factor of the creative learning methodology

  • Max Filipe da Costa Braga UFPA
  • Wilson Rogério Soares e Silva IFPA
  • Orlando Shigueo Ohashi Junior UFRA
  • Renato Hidaka Torres UFPA

Abstract


This research investigates the use of the Scratch platform in the development and monitoring of creative immersion tests with students. It is believed that interactive proposals such as Scratch provide the student's motiva-tion and contribute to the development of skills and competencies. To verify this hypothesis, we developed three experiments and analyzed the partici-pants emotions with a convolutional neural network. The results show that happiness and neutrality emotions were predominant. Observing these feelings allows us to conclude that Scratch contributes to the motivational factor of the learning.
Keywords: Creative Learning, Convolutional Neural Networks, Scratch, Sentiment Analysis

References

Bobó, M.; Campos, F.; Ströele, V.; Braga, R.; David, J. M. N. (2019). Análise de Sen-timentos na Educação: Um Mapeamento Sistemático da Literatura. In: Anais do XXX SBIE – VIII CBIE. Brasília – DF, Brasil.

Braga-A, Max. (2021). Materiais para a construção dos Jogos Educativos na Plataforma Scratch. https://bit.ly/ArquivosJogosEducativos. Abril.

Braga-B, Max. (2021). Playlist dos jogos Educativos. http://bit.ly/PlaylistDosJogos. Abril.

Dinesh, D. e Bijlani, K. (2016). Student analytics for productive teaching/learning. In: 2016 International Conference on Information Science (ICIS). [S.l.: s.n.]. p. 97–102.

Franco, Roberto Y. da S. (2019). Xmood: A tool to investigate the user experience (UX) based on multimodal Sentiment analysis and information visualization (InfoVis). In: International Conference Information Visualization (IV) 23rd. Qualis: B1.

Goodfellow, I., Bengio, Y., e Courville, A. (2016). Deep Learning. The MIT Press.

Goodfellow, I., Erhan, D., Carrier, P., Courville, A., Mirza, M., Hamner, B., Cukierski, W., Tang, Y., Thaler, D., Lee, D., Zhou, Y., Ramaiah, C., Feng, F., Li, R., Wang, X., Athanasakis, D., Shawe-Taylor, J., Milakov, M., Park, J., Ionescu, R., Popescu, M., Grozea, C., Bergstra, J., Xie, J., Romaszko, L., Xu, B., Chuang, Z., e Bengio, Y. (2015) Challenges in representation learning: A report on three machine learning contests. Neural Networks, 64:59--63. Special Issue on "Deep Learning of Represen-tations".

Grando, Aldoir. (2020). Análise facial de emoções utilizando redes neurais no contexto de uma sala de aula inteligente. Caxias do Sul – RS, Brasil.

Daher, Alessandra Ferreira Beker. (2007). Aluno e professor: protagonistas do processo de aprendizagem.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., e Eastmond, E. (2010). The Scratch programming language and environment. ACM Transactions on Computing Educa-tion, 10(4):16:1–16:15.

Mohammad, Chaudhari Amol. (2019). Emotion Recognition Using Keras. Medium. https://medium.com/@ee18m003/emotion-recognition-using-keras-ad7881e2c3c6. Outubro.

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects, Passions, Peers, and Play. MIT Press.

Zaletelj, J.; Košir, A. (2017). Predicting students’ attention in the classroom from kinect facial and body features. EURASIP Journal on Image and Video Processing, Spring-er Nature, v. 2017, n. 1, dez.
Published
2021-07-18
BRAGA, Max Filipe da Costa; SOARES E SILVA, Wilson Rogério; OHASHI JUNIOR, Orlando Shigueo; TORRES, Renato Hidaka. Sentiment analysis with convolutional neural network: an investigation of the motivational factor of the creative learning methodology. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 48. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 191-200. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2021.15822.