Jusbrasil and Technological Challenges to Facilitate and Improve Access to Justice

  • Edleno Silva de Moura UFAM
  • Rafael Costa Jusbrasil
  • Gabriel Jordão UFAM
  • Gustavo Barreto Maia Jusbrasil

Abstract


This article presents an introduction to some of the technological challenges faced by the company Jusbrasil in its mission to approximate the Brazilians to the justice. Jusbrasil seeks to combine law and technology so that justice crosses the borders of the courts and reaches the homes of any citizen. Millions of people access the company's platform nowadays, with access to more than 900,000 lawyers. On the other hand, our database has billions of documents containing artifacts related to law in Brazil. This scenario provides opportunities for the development of intelligent products, such as effective and efficient search systems, tools for structuring and processing information, data mining and recommendation systems, among others. In this work, we discuss and present to the academic community some of the technological challenges faced by the company.
Keywords: search, information retrieval, legal information retrieval

References

Abdollahpouri, H., Burke, R., and Mobasher, B. (2019). Managing popularity bias in recommender systems with personalized re-ranking. arXiv preprint arXiv:1901.07555.

Collins, A., Tkaczyk, D., Aizawa, A., and Beel, J. (2018). Position bias in recommender systems for digital libraries. In International Conference on Information, pages 335–344. Springer.

Cortez, E., Oliveira, D., da Silva, A. S., de Moura, E. S., and Laender, A. H. (2011). Joint unsupervised structure discovery and information extraction. In Proceedings of the 2011 ACM SIGMOD, pages 541–552.

Cristo, M., Calado, P., de Moura, E. S., Ziviani, N., and Ribeiro-Neto, B. (2003). Link information as a similarity measure in web classification. In International Symposium on String Processing and Information Retrieval. SPIRE, pages 43–55. Springer.

Daoud, C. M., de Moura, E. S., Fernandes, D., da Silva, A. S., Rossi, C., and Carvalho, A. (2017). Waves: a fast multi-tier top-k query processing algorithm. Information Retrieval Journal, 20(3):292–316.

De Freitas, J., Pappa, G. L., da Silva, A. S., Gonc, M. A., Moura, E., Veloso, A., Laender, A. H., de Carvalho, M. G., et al. (2010). Active learning genetic programming for record deduplication. In IEEE Congress on Evolutionary Computation, pages 1–8.

Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C., Croft, W. B., and Cheng, X. (2019). A deep look into neural ranking models for information retrieval. arXiv preprint arXiv:1903.06902.

Kluttz, D. N. and Mulligan, D. K. (2019). Automated decision support technologies and the legal profession. Berkeley Tech. LJ, 34:853.

Krishnan, S., Patel, J., Franklin, M. J., and Goldberg, K. (2014). A methodology for learning, analyzing, and mitigating social influence bias in recommender systems. In Proceedings of the 8th ACM Conference on Recommender systems, pages 137–144.

Li, S., Zhang, H., Ye, L., Guo, X., and Fang, B. (2019). Mann: A multichannel attentive neural network for legal judgment prediction. IEEE Access, 7:151144 151155.

Lucchese, C., Nardini, F. M., Perego, R., Orlando, S., and Trani, S. (2018). Selective gradient boosting for effective learning to rank. In Proceedings of 41st SIGIR, pages 155–164. ACM.

Mesquita, F., da Silva, A. S., de Moura, E. S., Calado, P., and Laender, A. H. (2007).Labrador: Efficiently publishing relational databases on the web by using keyword based query interfaces. Information processing & management, 43(4):983–1004.

Nóbrega, C. and Marinho, L. (2019). Towards explaining recommendations through local surrogate models. In Proceedings of the 34th ACM SIGAPP, pages 1671–1678.

Petri, M., Moffat, A., Mackenzie, J., Culpepper, J. S., and Beck, D. (2019). Accelerated query processing via similarity score prediction. In Proceedings of the 42nd SIGIR, pages 485–494.

Ribeiro, M. T., Ziviani, N., Moura, E. S. D., Hata, I., Lacerda, A., and Veloso, A. (2014). Multiobjective pareto-efficient approaches for recommender systems. ACM TIST, 5(4):1–20.

Rossi, C., de Moura, E. S., Carvalho, A. L., and da Silva, A. S. (2013). Fast documentat-a-time query processing using two-tier indexes. In Proceedings of the 36th SIGIR, pages 183–192.

Silva, S. D. N., De Moura, E. S., Calado, P. P., and Da Silva, A. S. (2020). Effective lightweight learning-to-rank method using unified term impacts. IEEE Access, 8:70420–70437.

Silva, T. P. C., de Moura, E. S., Cavalcanti, J. M. B., da Silva, A. S., de Carvalho, M. G., and Gonc¸alves, M. A. (2009). An evolutionary approach for combining different sources of evidence in search engines. Information Systems, 34(2):276–289.

Sousa, D. X., Canuto, S., Gonc¸alves, M. A., Rosa, T. C., and Martins,W. S. (2019). Risksensitive learning to rank with evolutionary multi-objective feature selection. ACM TOIS, 37(2):24:1–24:34.

Vidal, M. L., da Silva, A. S., de Moura, E. S., and Cavalcanti, J. M. (2008). Structurebased crawling in the hidden web. J. UCS, 14(11):1857–1876.

Zhong, H., Guo, Z., Tu, C., Xiao, C., Liu, Z., and Sun, M. (2018). Legal judgment prediction via topological learning. In Proceedings of EMNLP, pages 3540–3549.
Published
2021-07-18
MOURA, Edleno Silva de; COSTA, Rafael; JORDÃO, Gabriel; MAIA, Gustavo Barreto. Jusbrasil and Technological Challenges to Facilitate and Improve Access to Justice. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 48. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 207-213. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2021.15824.