Hardware/Software System to Energy Generation Losses Estimates in Photovoltaic Solar Plants

  • Guilherme G. Souza UFMS
  • Ricardo R. Santos UFMS
  • Erlandson F. Saraiva UFMS

Abstract


Soiling on the photovoltaic modules has a straight impact on the solar energy generation. One way to minimize such impact is to identify the power generation losses due to soiling and perform cleanup procedures. Towards this end, this work presents a hardware/software system comprised of an electronic platform for the acquisition of environmental variables and a non-linear mixed effect model (NLME) to estimate the power generation from the solar power plants. The system allows users to analyze the soiling impact on energy generation on photovoltaic solar plants. The model was evaluated using a real dataset comprised of measurements of generated power and environmental variables from October 2019 up to April 2020. The fitted model has presented a mean square error of 0.0044 and the results showed daily power losses below 1.1%.
Keywords: Soiling, Photovoltaic Solar Energy, Particulate Deposition, Soiling Station, Log-Logistic Predictor

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactionson Automatic Control, 19(6):716–723.

Catelani, M., Ciani, L., Cristaldi, L., Faifer, M., Lazzaroni, M., and Rossi, M. (2012).Characterization of photovoltaic panels: The effects of dust. InIEEE InternationalEnergy Conference and Exhibition, pages 45–50.

Coello, M. and Boyle, L. (2019). Simple model for predicting time series soiling ofphotovoltaic panels.IEEE Journal of Photovoltaics, 9(5):1382–1387.

El-Shobokshy, M. and Hussein, F. (1993). Effect of dust with different physical propertieson the performance of photovoltaic cells.Solar energy, 6(51):505–511.

Gostein, M., Caron, J. R., and Littmann, B. (2014). Measuring soiling losses at utility-scale pv power plants. InIEEE Photovoltaic Specialist Conference (PVSC), pages0885–0890.

Hammad, B., Al-Abed, M., Al-Ghandoor, A., Al-Sardeah, A., and Al-Bashir, A. (2018).Modeling and analysis of dust and temperature effects on photovoltaic systems’ perfor-mance and optimal cleaning frequency: Jordan case study.Renewable and SustainableEnergy Reviews, 82:2218–2234.

Hupa, L., Bergman, R., Fr ̈oberg, L., Vane-Tempest, S., Hupa, M., Kronberg, T., Pesonen-Leinonen, E., and Sj ̈oberg, A.-M. (2005). Chemical resistance and cleanability ofglazed surfaces.Surface science, 584(1):113–118.

Javed, W., Guo, B., and Figgis, B. (2017). Modeling of photovoltaic soiling loss as afunction of environmental variables.Solar Energy, 157:397–407.

Mani, M. and Pillai, R. (2010). Impact of dust on solar photovoltaic (pv) performance:Research status, challenges and recommendations.Renewable and Sustainable EnergyReviews, 14:3124–3131.

Mehta, S., Azad, A. P., Chemmengath, S. A., Raykar, V., and Kalyanaraman, S. (2018).DeepSolarEye: Power Loss Prediction and Weakly Supervised Soiling Localizationvia Fully Convolutional Networks for Solar Panels.Proceedings of the 2018 IEEEWinter Conference on Applications of Computer Vision (WACV), pages 333–342.

Pavan, A. M., Mellit, A., De Pieri, D., and Kalogirou, S. A. (2013). A comparisonbetween bnn and regression polynomial methods for the evaluation of the effect ofsoiling in large scale photovoltaic plants.Applied energy, 108:392–401.

Ribeiro, K., Santos, R., Saraiva, E., and Rajagopal, R. (2021). A statistical methodo-logy to estimate soiling losses on photovoltaic solar plants.Journal of Solar EnergyEngineering, 143(6):064501.

Schwarz, G. (1978). Estimating the dimension of a model.Ann. Statist., 6(2):461–464.

Zorrilla-Casanova, J., Philiougine, M., Carretero, J., Bernaola, P., Carpena, P., Mora-ópez, L., and Sidrach-de Cardona, M. (2011). Analysis of dust losses in photovoltaicmodules. InWorld Renewable Energy Congress, pages 8–13.
Published
2021-07-18
SOUZA, Guilherme G.; SANTOS, Ricardo R.; SARAIVA, Erlandson F.. Hardware/Software System to Energy Generation Losses Estimates in Photovoltaic Solar Plants. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 48. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 214-224. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2021.15825.