Smart Drivers: Simulating the Benefits of Giving Twitter Information about Traffic Status
Resumo
One of the main pillars to reach smart cities is a smart transportation system, both public and private. Our long term goal is to develop an agentbased infrastructure that can be used for investigations that are key to evaluate the effects of concepts related to smart transportation systems. However, such infrastructure demands an amount of data that few traffic authorities can afford to have. An alternative to installing sensors is to use human and their mobile devices as sensors. However, this poses challenges for the gathering and management of such data. In this paper we propose a methodology to deal with this problem. It aims at capturing and treating traffic data (mainly streets and links statuses) that appear in social networks, microblogs, etc. Specifically, we illustrate the approach with data that appears in the blog "Trânsito" that is managed by the daily paper OESP, online edition. With the implemented prototype, we have simulated thousands of agents that can do en-route adjustments on their routes based on updated knowledge of the traffic status. We were able to derive conclusions that would not be possible if only macroscopic simulation methods were used, as for instance the extent of improvement in the travel time of drivers that receive information.Referências
Balmer, M., Cetin, N., Nagel, K., and Raney, B. (2004). “Towards truly agent-based trafc and mobility simulations”. In Jennings, N., Sierra, C., Sonenberg, L., and Tambe, M., editors, Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multi Agent Systems, AAMAS, volume 1, pages 60–67, New York, USA. New York, IEEE Computer Society.
Bazzan, A. L. C. and Azzi, G. G. (2012). “An investigation on the use of navigation devices in smart transportation systems”. In SBSI Anais do VIII Simpósio Brasileiro de Sistemas de Informação, volume 1, pages 156–161, São Paulo/SP, Brasil. SBC.
Bazzan, A. L. C., de B. do Amarante, M., Azzi, G. G., Benavides, A. J., Buriol, L. S., Moura, L., Ritt, M. P., and Sommer, T. (2011). “Extending trafc simulation based on cellular automata: from particles to autonomous agents”. In Burczynski, T., Kolodziej, 258 J., Byrski, A., and Carvalho, M., editors, Proc. of the Agent-Based Simulation (ABS / ECMS 2011), pages 91–97, Krakow. ECMS.
Bazzan, A. L. C. and Klügl, F. (2013). A review on agent-based technology for trafc and transportation. The Knowledge Engineering Review, FirstView:1–29.
Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz, D. (2011). “SUMO simulation of urban mobility: An overview”. In SIMUL 2011, The Third International Conference on Advances in System Simulation, pages 63–68, Barcelona, Spain.
Chmura, T. and Pitz, T. (2007). An extended reinforcement algorithm for estimation of human behavior in congestion games. Journal of Articial Societies and Social Simulation, 10(2).
de Lima, V. G., de M. R. Magalhães, F., de O. Tito, A., dos Santos, R. A., Ristar, A. R. R., dos Santos, L. M., Vieira, V., and Salgado, A. C. (2012). “UbibusRoute: Um sistema de identicação e sugestão de rotas de ônibus baseado em informações de redes sociais”. In VIII Simpósio Brasileiro de Sistemas de Informação, (SBSI 2012), São Paulo. Sociedade Brasileira de Computação.
Gawron, C. (1998). Simulation-based trafc assignment. PhD thesis, University of Cologne, Cologne, Germany.
Jaques, P., Pasin, M., Chiwiacowsky, L. D., Bazzan, A. L. C., Moraes, R., and Bastos, R. (2012). “Provendo informações para atores do sistema de transporte público: um passo na direção de sistemas inteligentes de transporte”. In XXVI ANPET Congresso de Pesquisa e Ensino em Transportes, Joinville, SC. ANPET.
Koutsoupias, E. and Papadimitriou, C. (1999). “Worst-case equilibria”. In Proceedings of the 16th annual conference on Theoretical aspects of computer science (STACS), pages 404–413, Berlin, Heidelberg. Springer-Verlag.
Ortúzar, J. and Willumsen, L. G. (2001). Modelling Transport. John Wiley & Sons, 3rd edition.
Passos, L. S., Kokkinogenis, Z., and Rossetti, R. J. F. (2011). Towards the next-generation trafc simulation tools: a rst appraisal. 3rd Workshop on Intelligent Systems and Applications (WISA), 6th Iberian Conference on Information Systems and Technologies (CISTI’11).
Bazzan, A. L. C. and Azzi, G. G. (2012). “An investigation on the use of navigation devices in smart transportation systems”. In SBSI Anais do VIII Simpósio Brasileiro de Sistemas de Informação, volume 1, pages 156–161, São Paulo/SP, Brasil. SBC.
Bazzan, A. L. C., de B. do Amarante, M., Azzi, G. G., Benavides, A. J., Buriol, L. S., Moura, L., Ritt, M. P., and Sommer, T. (2011). “Extending trafc simulation based on cellular automata: from particles to autonomous agents”. In Burczynski, T., Kolodziej, 258 J., Byrski, A., and Carvalho, M., editors, Proc. of the Agent-Based Simulation (ABS / ECMS 2011), pages 91–97, Krakow. ECMS.
Bazzan, A. L. C. and Klügl, F. (2013). A review on agent-based technology for trafc and transportation. The Knowledge Engineering Review, FirstView:1–29.
Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz, D. (2011). “SUMO simulation of urban mobility: An overview”. In SIMUL 2011, The Third International Conference on Advances in System Simulation, pages 63–68, Barcelona, Spain.
Chmura, T. and Pitz, T. (2007). An extended reinforcement algorithm for estimation of human behavior in congestion games. Journal of Articial Societies and Social Simulation, 10(2).
de Lima, V. G., de M. R. Magalhães, F., de O. Tito, A., dos Santos, R. A., Ristar, A. R. R., dos Santos, L. M., Vieira, V., and Salgado, A. C. (2012). “UbibusRoute: Um sistema de identicação e sugestão de rotas de ônibus baseado em informações de redes sociais”. In VIII Simpósio Brasileiro de Sistemas de Informação, (SBSI 2012), São Paulo. Sociedade Brasileira de Computação.
Gawron, C. (1998). Simulation-based trafc assignment. PhD thesis, University of Cologne, Cologne, Germany.
Jaques, P., Pasin, M., Chiwiacowsky, L. D., Bazzan, A. L. C., Moraes, R., and Bastos, R. (2012). “Provendo informações para atores do sistema de transporte público: um passo na direção de sistemas inteligentes de transporte”. In XXVI ANPET Congresso de Pesquisa e Ensino em Transportes, Joinville, SC. ANPET.
Koutsoupias, E. and Papadimitriou, C. (1999). “Worst-case equilibria”. In Proceedings of the 16th annual conference on Theoretical aspects of computer science (STACS), pages 404–413, Berlin, Heidelberg. Springer-Verlag.
Ortúzar, J. and Willumsen, L. G. (2001). Modelling Transport. John Wiley & Sons, 3rd edition.
Passos, L. S., Kokkinogenis, Z., and Rossetti, R. J. F. (2011). Towards the next-generation trafc simulation tools: a rst appraisal. 3rd Workshop on Intelligent Systems and Applications (WISA), 6th Iberian Conference on Information Systems and Technologies (CISTI’11).
Publicado
23/07/2013
Como Citar
BAZZAN, Ana L. C.; ARAÚJO, Pedro G.; GALAFASSI, Cristiano; TAVARES, Anderson R.; VECCHIA, Alessandro Dalla; VIT, Antônio Rodrigo D. de; VIVIAN, Glaucio R..
Smart Drivers: Simulating the Benefits of Giving Twitter Information about Traffic Status. In: SEMINÁRIO INTEGRADO DE SOFTWARE E HARDWARE (SEMISH), 40. , 2013, Maceió.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2013
.
p. 249-259.
ISSN 2595-6205.