Skin color detection in content-based image scaling improvement

  • Savio Lopes Rabelo IFCE
  • Tamara Arruda Pereira IFCE
  • Francisco Nivando Bezerra IFCE

Abstract


Seam Carving is a content-aware resizing method capable of modifying the width or height of pictures. This algorithm applies an energy function to evaluate the importance of each pixel. In special cases, such as images that contain people, the method frequently presents deformation of objects, due the energy function not being able to detect a person. In this context, this paper presents a modification of the energy function used in seam carving aiming to better preserve people in images. This energy function is generated from a neu- ral network that has as input arguments the color of the skin in order to classify the pixel in skin or non-skin.

References

Avidan, S. & Shamir, A. (2007). Seam carving for content-aware image resizing. 26(3):10.

Baskan, S., Bulut, M. M., & Atalay, V. (2002). Projection based method for segmentation of human face and its evaluation. Pattern Recognition Letters, 23(14):1623–1629.

Bhute, A. N. & Meshram, B. (2014). Content based image indexing and retrieval. arXiv preprint arXiv:1401.1742.

Casati, J. P. B., Moraes, D. R., & Rodrigues, E. L. L. (2013). Sfa: A human skin image database based on feret and ar facial images. In IX workshop de Visao Computational, Rio de Janeiro.

Dong, W., Zhou, N., Paul, J.-C., & Zhang, X. (2009). Optimized image resizing using seam carving and scaling. In ACM Transactions on Graphics (TOG), volume 28, page 125. ACM.

Fang, Y., Chen, Z., Lin, W., & Lin, C.-W. (2012). Saliency detection in the compres- sed domain for adaptive image retargeting. IEEE Transactions on Image Processing, 21(9):3888–3901.

Habili, N., Lim, C. C., & Moini, A. (2004). Segmentation of the face and hands in sign language video sequences using color and motion cues. IEEE Transactions on Circuits and Systems for Video Technology, 14(8):1086–1097.

Hajiarbabi, M. & Agah, A. (2015). Human skin color detection using neural networks. Journal of Intelligent Systems, 24(4):425–436.

Han, J., Awad, G., & Sutherland, A. (2009). Automatic skin segmentation and tracking in sign language recognition. IET Computer Vision, 3(1):24–35.

Kakumanu, P., Makrogiannis, S., & Bourbakis, N. (2007). A survey of skin-color mode- ling and detection methods. Pattern recognition, 40(3):1106–1122.

Kang, S., Choi, B., & Jo, D. (2016). Faces detection method based on skin color modeling. Journal of Systems Architecture, 64:100–109.

Liu, C.-C. & Chung, P.-C. (2011). Objects extraction algorithm of color image using adaptive forecasting filters created automatically. International Journal of Innovative Computing, Information and Control, 7(10):5771–5787.

M. Martinez, A. & Benavente, R. (1998). The ar face database. Tech. Rep. 24 CVC Technical Report.

Moallem, P., Mousavi, B. S., & Monadjemi, S. A. (2011). A novel fuzzy rule base system for pose independent faces detection. Applied Soft Computing, 11(2):1801–1810.

Naji, S., Jalab, H. A., & Kareem, S. A. (2018). A survey on skin detection in colored images. Artificial Intelligence Review.

Naji, S. A. (2013). Human face detection from colour images based on multi-skin mo- dels, rule-based geometrical knowledge, and artificial neural network. PhD thesis, University of Malaya.

Nguyen, D. T., Li, W., & Ogunbona, P. O. (2016). Human detection from images and videos: A survey. Pattern Recognition, 51:148–175.

Oliveira, S. A. F. D. (2016). Uma abordagem com base em algoritmos genéticos para o redimensionamento de imagens sensível ao conteúdo. Dissertação, Instituto Federal de Educação, Ciência e Tecnologia - Campus Fortaleza.

Perez, M., Avila, S., Moreira, D., Moraes, D., Testoni, V., Valle, E., Goldenstein, S., & Rocha, A. (2017). Video pornography detection through deep learning techniques and motion information. Neurocomputing, 230:279–293.

Phillips, P. J., Wechsler, H., Huang, J., & Rauss, P. J. (1998). The feret database and evaluation procedure for face-recognition algorithms. Image and vision computing, 16(5):295–306.

Phung, S. L., Bouzerdoum, A., & Chai, D. (2003). Skin segmentation using color and edge information. In Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings., volume 1, pages 525–528. IEEE.

Rubinstein, M., Gutierrez, D., Sorkine, O., & Shamir, A. (2010). A comparative study of image retargeting. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 29(6):160:1–160:10.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3):1.

Senturk, Z. K. & Akgun, D. (2017). Seam carving based image resizing detection using hybrid features. Tehnicki Vjesnik-Technical Gazette, 24(6):1825–1833.

Yuetao, D. & Nana, Y. (2011). Research of face detection in color image based on skin color. Energy Procedia, 13:9395–9401.

Zhipeng, C., Junda, H., & Wenbin, Z. (2010). Face detection system based on skin co- lor model. In 2010 International Conference on Networking and Digital Society, vo- lume 2, pages 664–667. IEEE.
Published
2019-07-09
RABELO, Savio Lopes; PEREIRA, Tamara Arruda; BEZERRA, Francisco Nivando. Skin color detection in content-based image scaling improvement. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 46. , 2019, Belém. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 137-148. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2019.6574.