Uma Contribuição à Reabilitação Cardíaca Explorando a Identificação de Situações na IoT

  • Douglas Scheunemann UCPEL
  • Adenauer Yamin UCPEL
  • João Lopes UFRGS
  • Cláudio Geyer UFRGS

Abstract


The Internet of Things (IoT) has influenced the development of computational systems, enabling a more proactive interaction with users, expanding features as mobility and availability. In this scenario increases the demand for applications that can recognize the user’s context and can provide situationbased services. The identification of situations is a research challenge for applications in the IoT, given the complexity of the relationships that must be established and processed. This paper presents an approach for the identification of situations, which is integrated with the EXEHDA middleware. The proposed approach provides the collaboration between the middleware and the applications. A case study in the health area was developed to evaluate the architecture. This case study was focused on cardiac rehabilitation.

References

Bellavista, P., Corradi, A., Fanelli, M., and Foschini, L. (2012). A survey of context data distribution for mobile ubiquitous systems. ACM Comput. Surv., 44(4):24:1–24:45.

Cimino, M. G. C. A., Lazzerini, B., Marcelloni, F., and Ciaramella, A. (2012). An adaptive rule-based approach for managing situation-awareness. Expert Syst. Appl., 39(12):10796–10811.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California.

Haghighi, D. P., Averi, P., Indrawan-Santiago, M., and Minh, H. T. (2014). Situationaware mobile health monitoring. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pages 248–256.

Knappmeyer, M., Kiani, S., Reetz, E., Baker, N., and Tonjes, R. (2013). Survey of context provisioning middleware. Communications Surveys Tutorials, IEEE, 15(3):1492–1519.

Kwapisz, J. R., Weiss, G. M., and Moore, S. a. (2011). Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter, 12:74.

Lopes, J., Souza, R., Geyer, C., Costa, C., Barbosa, J., Pernas, A., and Yamin, A. (2014a). A middleware architecture for dynamic adaptation in ubiquitous computing. Journal of Universal Computer Science, 20(9):1327–1351.

Lopes, J., Souza, R., Pernas, A., Yamin, A., and Geyer, C. (2014b). A distributed architecture for supporting context-aware applications in ubicomp. In Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on, pages 584–590.

Negrão, C. E. and Barreto, A. C. P. (2010). Cardiologia do Exercício: do Atleta ao Cardiopata. Manole, Barueri, SP - Brazil, 3 edition.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2013). Context Aware Computing for The Internet of Things : A Survey. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, X(X):1–41.

Rabelo, D., Gil, C., and Araújo, S. D. (2006). Reabilitação cardíaca com ênfase no exercício: uma revisão sistemática. Revista Brasileira de Medicina do Esporte, 12(5):279–285.

Razzaque, M. A., Milojevic-Jevric, M., Palade, A., and Clarke, S. (2015). Middleware for Internet of Things: a Survey. Internet of Things Journal, IEEE, PP(99):1.

Sobrevilla, P. and Montseny, E. (2003). Fuzzy Sets in Computer Vision : an Overview. Mathw. Soft Computing, 10:71–83.

Yuan, B. and Herbert, J. (2014). Context-aware hybrid reasoning framework for pervasive healthcare. Personal and Ubiquitous Computing, 18(4):865–881.
Published
2016-07-04
SCHEUNEMANN, Douglas; YAMIN, Adenauer; LOPES, João; GEYER, Cláudio. Uma Contribuição à Reabilitação Cardíaca Explorando a Identificação de Situações na IoT. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 43. , 2016, Porto Alegre. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2016 . p. 1772-1782. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2016.9526.