Data Augmentation Improves Machine Unlearning
Resumo
Machine Unlearning (MU) aims to remove the influence of specific data from a trained model while preserving its performance on the remaining data. Although a few works suggest connections between memorisation and augmentation, the role of systematic augmentation design in MU remains underinvestigated. In this work, we investigate the impact of different data augmentation strategies on the performance of unlearning methods, including SalUn, Random Label, and Fine-Tuning. Experiments conducted on CIFAR-10 and CIFAR-100, under varying forget rates, show that proper augmentation design can significantly improve unlearning effectiveness, reducing the performance gap to retrained models. Results showed a reduction of up to 40.12% of the Average Gap unlearning Metric, when using TrivialAug augmentation. Our results suggest that augmentation not only helps reduce memorization but also plays a crucial role in achieving privacy-preserving and efficient unlearning.
Palavras-chave:
Measurement, Graphics, Systematics, Data augmentation, Data models
Publicado
30/09/2025
Como Citar
FALCAO, Andreza M. C.; CORDEIRO, Filipe R..
Data Augmentation Improves Machine Unlearning. In: CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 38. , 2025, Salvador/BA.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 54-55.
