Robust and effective method for automatic generation of one-dimensional transfer functions
Resumo
In direct volume rendering, the use of transfer functions allows the visualization of specific parts of the volume, revealing significant structures such as boundaries between different materials. To interactively specify an adequate transfer function is a very challenging and time-consuming task. Besides, a user can settle with a transfer function that does not reveal the overall structure inside the volume. Hence, the importance of generating adequate transfer functions automatically. Since Kindlmann and Durkin's seminal work on the semi-automatic generation of transfer functions, many research works have been conducted attempting to improve their proposal. Despite some fine resulting visualizations, many of these works aimed to diminish the problem of boundary overlaps, in the data domain, by using two-dimensional transfer functions, thus decreasing the focus on the automatic generation and leaving to the user, again, the task to manually isolate isosurfaces. Moreover, fine-tuning two-dimensional transfer functions is less intuitive than adjusting one-dimensional ones. This paper redirects Kindlmann and Durkin's concepts of boundary characterization and proposes a new method to automatically generate one-dimensional transfer functions, more robust to boundary overlaps. This work also suggests a rendering filter to isolate detected isosurfaces in the visualization.
Referências
H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. S. Avila, K. M. Raghu, R. M. Ans, "The transfer function bake-off", IEEE Computer Graphics and Applications, vol. no. 3, pp. 16-May 2001.
J. Kniss, G. Kindlmann, C. Hansen, "Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets", Visualization 2001. VIS '01. Proceedings, pp. 255-52001.
J. Kniss, G. Kindlmann, C. Hansen, "Multidimensional transfer functions for interactive volume rendering", IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-22002.
Y. Wang, W. Chen, G. Shan, T. Dong, X. Chi, "Volume exploration using ellipsoidal gaussian transfer functions", 2010 IEEE Pacific Visualization Symposium (Pacific Vis), pp. 25-2010.
Y. Zou, D. Bai, S. Wang, Y. Kang, "A new two-dimensional transfer functions for volume rendering", 2010 3rd International Congress on Image and Signal Processing, pp. 3733-37Oct 2010.
V. Pekar, R. Wiemker, D. Hempel, "Fast detection of meaningful isosurfaces for volume data visualization", Visualization 2001. VIS '01. Proceedings, pp. 223-22001.
S. Tenginakai, J. Lee, R. Machiraju, "Salient iso-surface detection with model-independent statistical signatures", Visualization 2001. VIS '01. Proceedings, pp. 231-22001.
S. Park, C. Bajaj, "Multi-dimensional transfer function design for scientific visualization", Proceedings of the Fourth Indian Conference on Computer Vision Graphics & Image Processing (ICVGIP), pp. 290-295, 2004.
E. B. Lum, K.-L. Ma, "Lighting transfer functions using gradient aligned sampling", Proceedings of the Conference on Visualization '04 ser. VIS '04, pp. 289-296, 2004.
P. Sereda, A. V. Bartroli, I. W. O. Serlie, F. A. Gerritsen, "Visu-alization of boundaries in volumetric data sets using LH histograms", IEEE Transactions on Visualization and Computer Graphics, vol. no. 2, pp. 208-2Mar 2006.
M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, M. E. Grller, "Volume visualization based on statistical transfer-function spaces", 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 17-2010.
S. Takahashi, Y. Takeshima, I. Fujishiro, "Topological volume skeletonization and its application to transfer function design", Graphical Models, vol. no. 1, pp. 24-2004.
S. Lan, L. Wang, Y. Song, Y. P. Wang, L. Yao, K. Sun, B. Xia, X. Zongben, "Improving separability of structures with similar attributes in 2d transfer function design", IEEE Transactions on Visualization and Computer Graphics, vol. no. 99, pp. 1546-152016.
D. Ponciano, M. Seefelder, R. Marroquim, "Graph-based interactive volume exploration", Computers & Graphics, vol. pp. 55-Nov 2016.
P. Ljung, J. Krger, E. Groller, M. Hadwiger, C. D. Hansen, A. Ynnerman, "State of the Art in Transfer Functions for Direct Volume Rendering", Computer Graphics Forum, vol. no. 3, pp. 669-691, Jun. 2016.
L. Yu, H. Yu, "Boundary-structure-aware transfer functions for volume classification", SIGGRAPH Asia 2017 Symposium on Visualization on - SA 'pp. 1-8, 2017.
Fan-Yin Tzeng, E. Lum, Kwan-Liu Ma, "An Intelligent System Approach to Higher-Dimensional Classification of Volume Data", IEEE Transactions on Visualization and Computer Graphics, vol. no. 3, pp. 273-2May 2005.
F. D. M. Pinto, C. M. D.S. Freitas, "Design of Multi-dimensional Transfer Functions Using Dimensional Reduction", Eurographics/IEEE-VGTC Symposium on Visualization, pp. 8, 2007.
L. Wang, X. Chen, S. Li, X. Cai, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, I. King, J. Wang, L.-W. Chan, D. Wang, "General Adaptive Transfer Functions Design for Volume Rendering by Using Neural Networks" in Neural Information Processing, Berlin, Heidelberg:Springer Berlin Heidelberg, vol. 42pp. 661-62006.
U. Ayachit, The paraview guide: a parallel visualization application, Kitware, Inc., 2015.
H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. Weber et al., "Visit: An end-user tool for visualizing and analyzing very large data. high performance visualization-enabling extreme-scale scientific insight", Insight, pp. 357-32012.
An interactive visualization software system for large-scale volume data, 2015.