Hierarchy-of-Visual-Words: a Learning-based Approach for Trademark Image Retrieval

  • Vítor Lourenço Federal Fluminense University
  • Gabriela Silva Federal Fluminense University
  • Leandro A. F. Fernandes Federal Fluminense University

Resumo


We present the Hierarchy-of-Visual-Words (HoVW), a novel trademark image retrieval (TIR) method that decomposes images into simpler geometric shapes and defines a descriptor for binary trademark image representation by encoding the hierarchical arrangement of component shapes. The proposed hierarchical organization of visual data stores each component shape as a visual word. It is capable of representing the geometry of individual elements and the topology of the trademark image, making the descriptor robust against linear as well as to some level of nonlinear transformation. Experiments show that HoVW outperforms previous TIR methods on the MPEG-7 CE-1 and MPEG-7 CE-2 image databases.

Palavras-chave: Trademark Image Retrieval, Machine Learning, visual feature extraction and matching

Referências

T. Kato K. Fujimura H. S. Nonmember "TRADEMARK: multimedia image database system with intelligent human interface" Systems and Comput. Japan vol. 21 pp. 33-46 1990.

J. K. Wu C. P. Lam B. M. Mehtre Y. J. Gao A. D. Narasimhalu "Content-based retrieval for trademark registration" Multimed. Tools Appl. vol. 3 pp. 245-1996.

J. P. Eakins M. E. Graham J. M. Boardman "Evaluation of a trademark image retrieval system" Proc. Annual BCS-IRSG Conf. Inf. Retr. Research 1997.

C. Hung Wei Y. Li W. Y. Chau C. T. Li "Trademark image retrieval using synthetic features for describing global shape and interior structure" Pattern Recognit. vol. 42 pp. 386-2009.

F. M. Anuar R. Setchi Y. Lai "Trademark image retrieval using an integrated shape descriptor" Expert Syst. Appl. vol. 40 pp. 105-2013.

H. Qi K. Li Y. Shen W. Qu "An effective solution for trademark image retrieval by combining shape description and feature matching" Pattern Recognit. vol. 43 pp. 2017-2027 2010.

F. Liu B. Wang F. Zeng "Trademark image retrieval using hierarchical region feature description" Proc. IEEE Intl. Conf. Image Process. pp. 3620-32017.

P. Sidiropoulos S. Vrochidis I. Kompatsiaris "Content-based binary image retrieval using the adaptive hierarchical density histogram" Pattern Recognit. vol. 44 pp. 739-2011.

M. Yang G. Qiu J. Huang D. Elliman "Near-duplicate image recognition and content-based image retrieval using adaptive hierarchical geometric centroids" Proc. Intl. Conf. Pattern Recognit. pp. 958-961 2006.

N. Alajlan M. S. Kamel G. Freeman "Multi-object image retrieval based on shape and topology" Signal Process. Image Commun. vol. 21 pp. 904-918 2006.

N. Alajlan M. S. Kamel G. H. Freeman "Geometry-based image retrieval in binary image databases" IEEE Trans. Pattern Anal. Mach. Intell. vol. 30 pp. 1003-1013 2008.

I. Biederman "Recognition-by-components: a theory of human image understanding" Psychol. Rev. vol. 94 pp. 115-1987.

M. Pawlik N. Augsten "Tree edit distance: robust and memory-efficient" Inf. Syst. vol. 56 pp. 157-2016.

S. Lloyd "Least squares quantization in PCM" IEEE Trans. Inf. Theor. vol. 28 pp. 129-1982.

D. Comaniciu P. Meer "Mean shift: a robust approach toward feature space analysis" IEEE Trans. Pattern Anal. Mach. Intell. vol. 24 pp. 603-2002.

M. Pelillo K. Siddiqi S. W. Zucker "Matching hierarchical structures using association graphs" IEEE Trans. Pattern Anal. Mach. Intell. vol. 21 pp. 1105-11999.

F. B. Silva S. Goldenstein S. Tabbone R. S. Torres "Image classification based on bag of visual graphs" Proc. IEEE Intl. Conf. Image Process. pp. 4312-42013.

F. B. Silva R. O. Werneck S. Goldenstein S. Tabbone R. S. Torres "Graph-based bag-of-words for classification" Pattern Recognit. vol. 74 pp. 266-2017.

K. Mikolajczyk C. Schmid "An affine invariant interest point detector" Proc. European Conf Comput. Vis. - Part I pp. 128-2002.

D. G. Lowe "Object recognition from local scale-invariant features" Proc. Intl. Conf. Comput. Vis. vol. 2 pp. 1150-11999.

C. A. Perez P. A. Estevez F. J. Galdames D. A. Schulz J. P. Perez D. Bastias D. R. Vilar "Trademark image retrieval using a combination of deep convolutional neural networks" Proc. Intl. Joint Conf. on Neural Networks pp. 1-7 2018.

T. Lan X. Feng L. Li Z. Xia "Similar trademark image retrieval based on convolutional neural network and constraint theory" Proc. Intl. Conf. on Image Process. Theor. Tools and Appl. pp. 1-6 2018.

T. Huang G. Yang G. Tang "A fast two-dimensional median filtering algorithm" IEEE Trans. Acoust. Speech Signal Process. vol. 27 pp. 13-18 1979.

C. Tomasi R. Manduchi "Bilateral filtering for gray and color images" Proc. Intl. Conf. Comput. Vis. pp. 839-1998.

N. Otsu "A threshold selection method from gray-level histograms" IEEE Trans. Syst. Man Cybern. vol. 9 pp. 62-66 1979.

S. Suzuki K. Abe "Topological structural analysis of digitized binary images by border following" Comput. Vis. Graph. Image Process. vol. 30 pp. 32-46 1985.

A. Khotanzad Y.H. Hong "Invariant image recognition by Zernike moments" IEEE Trans. Pattern Anal. Mach. Intell. vol. 12 pp. 489-1990.

Y. Mingqiang K. Kidiyo R. Joseph P. Yin "A survey of shape feature extraction techniques" Pattern Recognition 2008.

I. T. Young J. E. Walker J. E. Bowie "An analysis technique for biological shape. i*" Inf. Control vol. 25 pp. 357-1974.

L. Liu M. T. Özsu Encyclopedia of Database Systems Springer US 2009.

W. Kim Y Kim "A region-based shape descriptor using Zernike moments" Sig. Proc.: Image Comm. vol. 16 pp. 95-2000.

K. Simonyan A. Zisserman Very deep convolutional networks for large-scale image recognition 2014.

J. Deng W. Dong R. Socher L.-J. Li K. Li L. Fei-Fei "ImageNet: a large-scale hierarchical image database" Proc. CVPR pp. 248-2009.
Publicado
28/10/2019
LOURENÇO, Vítor; SILVA, Gabriela; FERNANDES, Leandro A. F. . Hierarchy-of-Visual-Words: a Learning-based Approach for Trademark Image Retrieval. In: CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 32. , 2019, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . DOI: https://doi.org/10.5753/sibgrapi.2019.9803.