Classificando Modelos de Implantes Dentários Usando Redes Neurais Convolucionais com Dados Sintetizados
Resumo
Classifying dental implants in radiography images using Convolutional Neural Networks implies training them using images that are hardly publicly available. This work seeks to build a synthetic database of dental implants and test its effectiveness when using it to train one of these networks. Three different implant models were methodically photographed and basic Data Augmentation and Style Transfer techniques were used to create a training database. Some real X-ray images were collected to compose a test dataset and a simple Convolutional Neural Network was architected. Training this network with the synthetic set and testing it with the real set resulted in a predictive model with 71% overall accuracy, which highlights the possibility of using a synthetic database for this purpose. Implications for results and future work were discussed.Referências
B. Guillaume, Dental implants: A review, Morphologie, vol. 100, no. 331, pp. 189198, 2016.
S. Sukegawa, K. Yoshii, T. Hara, K. Yamashita, K. Nakano, N. Yamamoto, H. Nagatsuka, and Y. Furuki, Deep neural networks for dental implant system classification, Biomolecules, vol. 10, no. 7, 2020.
M. A. Saghiri, P. Freag, A. Fakhrzadeh, A. M. Saghiri, and J. Eid, Current technology for identifying dental implants: a narrative review, Bulletin of the National Research Centre, vol. 45, no. 1, p. 7, Jan 2021.
R. Gunaseelan and M. Rajan, Overview of the SwissPlus Implant System, Journal of Oral Implantology, vol. 31, no. 3, pp. 121128, 06 2005.
H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, Classification using deep learning neural networks for brain tumors, Future Computing and Informatics Journal, vol. 3, no. 1, pp. 6871, 2018.
P. H. Yi, J. Wei, T. K. Kim, H. I. Sair, F. K. Hui, G. D. Hager, J. Fritz, and J. K. Oni, Automated detection & classification of knee arthroplasty using deep learning, The Knee, vol. 27, no. 2, pp. 535542, 2020.
T. Takahashi, K. Nozaki, T. Gonda, T. Mameno, M. Wada, and K. Ikebe, Identification of dental implants using deep learning-pilot study, Int J Implant Dent, vol. 6, no. 1, p. 53, Sep 2020.
M. Hadj Said, M. K. Le Roux, J. H. Catherine, and R. Lan, Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph, Int J Oral Maxillofac Implants, vol. 36, no. 6, pp. 10771082, 2020.
S. Albawi, T. A. Mohammed, and S. Al-Zawi, Understanding of a convolutional neural network, in 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 16.
E. Nuzzolese, S. Lusito, B. Solarino, and G. Di Vella, Radiographic dental implants recognition for geographic evaluation in human identification, J Forensic Odontostomatol, vol. 26, no. 1, pp. 811, Jun 2008.
G. Michelinakis, A. Sharrock, and C. W. Barclay, Identification of dental implants through the use of Implant Recognition Software (IRS), Int Dent J, vol. 56, no. 4, pp. 203208, Aug 2006.
S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, Medical image analysis using convolutional neural networks: A review, Journal of Medical Systems, vol. 42, no. 11, p. 226, Oct 2018.
C. Shorten and T. M. Khoshgoftaar, A survey on image data augmentation for deep learning, Journal of Big Data, vol. 6, no. 1, p. 60, Jul 2019.
Y. Xu, Y. Li, and B.-S. Shin, Medical image processing with contextual style transfer, Human-centric Computing and Information Sciences, vol. 10, no. 1, p. 46, Nov 2020.
NeoDent, Clinical case books, [link], [Acessado em 01/09/2021].
L. A. Gatys, A. S. Ecker, and M. Bethge, Image style transfer using convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
J. Cochoy, style-transfer, [link], 2019.
K. Potdar, T. Pardawala, and C. Pai, A comparative study of categorical variable encoding techniques for neural network classifiers, International Journal of Computer Applications, vol. 175, pp. 79, 10 2017.
M. Sokolova and G. Lapalme, A systematic analysis of performance measures for classification tasks, Information Processing & Management, vol. 45, no. 4, pp. 427437, 2009.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, International Journal of Computer Vision, vol. 128, no. 2, p. 336359, Oct 2019.
S. Sukegawa, K. Yoshii, T. Hara, K. Yamashita, K. Nakano, N. Yamamoto, H. Nagatsuka, and Y. Furuki, Deep neural networks for dental implant system classification, Biomolecules, vol. 10, no. 7, 2020.
M. A. Saghiri, P. Freag, A. Fakhrzadeh, A. M. Saghiri, and J. Eid, Current technology for identifying dental implants: a narrative review, Bulletin of the National Research Centre, vol. 45, no. 1, p. 7, Jan 2021.
R. Gunaseelan and M. Rajan, Overview of the SwissPlus Implant System, Journal of Oral Implantology, vol. 31, no. 3, pp. 121128, 06 2005.
H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, Classification using deep learning neural networks for brain tumors, Future Computing and Informatics Journal, vol. 3, no. 1, pp. 6871, 2018.
P. H. Yi, J. Wei, T. K. Kim, H. I. Sair, F. K. Hui, G. D. Hager, J. Fritz, and J. K. Oni, Automated detection & classification of knee arthroplasty using deep learning, The Knee, vol. 27, no. 2, pp. 535542, 2020.
T. Takahashi, K. Nozaki, T. Gonda, T. Mameno, M. Wada, and K. Ikebe, Identification of dental implants using deep learning-pilot study, Int J Implant Dent, vol. 6, no. 1, p. 53, Sep 2020.
M. Hadj Said, M. K. Le Roux, J. H. Catherine, and R. Lan, Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph, Int J Oral Maxillofac Implants, vol. 36, no. 6, pp. 10771082, 2020.
S. Albawi, T. A. Mohammed, and S. Al-Zawi, Understanding of a convolutional neural network, in 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 16.
E. Nuzzolese, S. Lusito, B. Solarino, and G. Di Vella, Radiographic dental implants recognition for geographic evaluation in human identification, J Forensic Odontostomatol, vol. 26, no. 1, pp. 811, Jun 2008.
G. Michelinakis, A. Sharrock, and C. W. Barclay, Identification of dental implants through the use of Implant Recognition Software (IRS), Int Dent J, vol. 56, no. 4, pp. 203208, Aug 2006.
S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, Medical image analysis using convolutional neural networks: A review, Journal of Medical Systems, vol. 42, no. 11, p. 226, Oct 2018.
C. Shorten and T. M. Khoshgoftaar, A survey on image data augmentation for deep learning, Journal of Big Data, vol. 6, no. 1, p. 60, Jul 2019.
Y. Xu, Y. Li, and B.-S. Shin, Medical image processing with contextual style transfer, Human-centric Computing and Information Sciences, vol. 10, no. 1, p. 46, Nov 2020.
NeoDent, Clinical case books, [link], [Acessado em 01/09/2021].
L. A. Gatys, A. S. Ecker, and M. Bethge, Image style transfer using convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
J. Cochoy, style-transfer, [link], 2019.
K. Potdar, T. Pardawala, and C. Pai, A comparative study of categorical variable encoding techniques for neural network classifiers, International Journal of Computer Applications, vol. 175, pp. 79, 10 2017.
M. Sokolova and G. Lapalme, A systematic analysis of performance measures for classification tasks, Information Processing & Management, vol. 45, no. 4, pp. 427437, 2009.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, International Journal of Computer Vision, vol. 128, no. 2, p. 336359, Oct 2019.
Publicado
18/10/2021
Como Citar
LOUZADA, Henrique Almeida; PAULA, Maria Inês Lage de.
Classificando Modelos de Implantes Dentários Usando Redes Neurais Convolucionais com Dados Sintetizados. In: WORKSHOP DE TRABALHOS DA GRADUAÇÃO - CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 34. , 2021, Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 195-200.
DOI: https://doi.org/10.5753/sibgrapi.est.2021.20038.