Digital 3D Animation of Powder-Snow Avalanches
Resumo
Physically based animation of fluids such as smoke, water, and fire provides some of the most stunning computer graphics in the entertainment industry. However, several phenomena still need to be fully understood, and their formulations are still the focus of intense research in other fields, such as Physics and Civil Engineering. That is the case with snow avalanches, whose numerical modeling is challenging due to their complex dynamics. The manipulation of such phenomena is new to computer graphics, and few works exist. This project aims to bring these formulations to the field of computer graphics regarding the digital animation of powder-snow avalanches.Referências
C. Ancey, Geomorphological Fluid Mechanics. Springer, 2001, ch. Snow Avalanches, pp. 319–338.
D. Dutykh, C. Acary-Robert, and D. Bresch, “Mathematical modeling of powder-snow avalanche flows,” Stud. Appl. Math., vol. 127, no. 1, pp. 38–66, 2011.
J. E. Simpson, Gravity Currents: In the environment and the laboratory. Cambridge University Press, 1999.
P. Goswami, “Snow and ice animation methods in computer graphics,” Computer Graphics Forum, vol. 43, no. 2, p. e15059, 2024. [Online]. Available: [link]
B. Turnbull and P. Bartelt, “Mass and momentum balance model of a mixed flowing/powder snow avalanche,” Surv. Geophys., vol. 24, no. 5/6, pp. 465–477, 2003.
B. Sovilla, J. N. McElwaine, and M. Y. Louge, “The structure of powder snow avalanches,” C. R. Phys., vol. 16, no. 1, pp. 97–104, 2015.
D. Issler, “Dynamically consistent entrainment laws for depth-averaged avalanche models,” J. Fluid Mech., vol. 759, pp. 701–738, 2014.
B. Sovilla, P. Burlando, and P. Bartelt, “Field experiments and numerical modeling of mass entrainment in snow avalanches,” J. Geophys. Res. Earth Surf., vol. 111, no. F3, 2006. [Online]. DOI: 10.1029/2005jf000391
X. Li, B. Sovilla, C. Ligneau, C. Jiang, and J. Gaume, “Different erosion and entrainment mechanisms in snow avalanches,” Mech. Res. Commun., vol. 124, p. 103914, 2022.
P. Bartelt, Y. Bühler, O. Buser, and C. Ginzler, “Plume formation in powder snow avalanches,” in International Snow Science Workshop, 2013.
B. Sovilla, J. N. McElwaine, and A. Köhler, “The intermittency regions of powder snow avalanches,” J. Geophys. Res. Earth Surf., vol. 123, no. 10, pp. 2525–2545, 2018.
S. B. Savage and K. Hutter, “The dynamics of avalanches of granular materials from initiation to runout. part i: Analysis,” Acta Mech., vol. 86, no. 1-4, pp. 201–223, 1991. [Online]. DOI: 10.1007/bf01175958
M. Rauter, A. Kofler, A. Huber, and W. Fellin, “fasavagehutterfoam 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with openfoam,” Geosci. Model Dev., vol. 11, no. 7, pp. 2923–2939, 2018.
M. Rauter and Z. Tukovic, “A finite area scheme for shallow granular flows on three-dimensional surfaces,” Comput. Fluids, vol. 166, pp. 184–199, 2018.
A. Voellmy, “Über die zerstörungskraft von lawinen,” vol. 73, pp. 212–217, 1955.
M. Christen, J. Kowalski, and P. Bartelt, “Ramms: Numerical simulation of dense snow avalanches in three-dimensional terrain,” Cold Reg. Sci. Technol., vol. 63, no. 1-2, pp. 1–14, 2010.
Y. Xu, X. Wang, J. Wang, C. Song, T. Wang, Y. Zhang, J. Chang, J. J. Zhang, J. Kosinka, A. Telea, and X. Ban, “An implicitly stable mixture model for dynamic multi-fluid simulations,” in SIGGRAPH Asia 2023, 2023.
H. Rusche, “Computational fluid dynamics of dispersed two-phase flows at high phase fractions,” PhD Thesis, Imperial College London, 2002. [Online]. Available: [link]
J. Etienne, P. Saramito, and E. J. Hopfinger, “Numerical simulations of dense clouds on steep slopes: application to powder-snow avalanches,” Ann. Glaciol., vol. 38, pp. 379–383, 2004.
K. Ivanova, A. Caviezel, Y. Bühler, and P. Bartelt, “Numerical modelling of turbulent geophysical flows using a hyperbolic shear shallow water model: Application to powder snow avalanches,” Comput. Fluids, vol. 233, p. 105211, 2022.
P. Bartelt, O. Buser, C. Vera Valero, and Y. Bühler, “Configurational energy and the formation of mixed flowing/powder snow and ice avalanches,” Ann. Glaciol., vol. 57, no. 71, pp. 179–188, 2016.
S. Worley, “A cellular texture basis function,” in SIGGRAPH '96, 1996.
G. F. Fasshauer, Meshfree Approximation Methods with MATLAB. World Scientific Publishing, 2007.
K. Museth, “Vdb: High-resolution sparse volumes with dynamic topology,” ACM Trans. Graph., vol. 32, no. 3, pp. 1–22, 2013.
C. Greenshields, OpenFOAM v12 User Guide. The OpenFOAM Foundation, 2024. [Online]. Available: [link]
U.S. Geological Survey, “1/3rd arc-second digital elevation models (dems) - usgs national map 3dep downloadable data collection,” 2024. [Online]. Available: [link]
F. Nascimento, F. S. Sousa, and A. Paiva, “Digital animation of powdersnow avalanches,” ACM Trans. Graph., vol. 44, no. 4, 2025.
D. Dutykh, C. Acary-Robert, and D. Bresch, “Mathematical modeling of powder-snow avalanche flows,” Stud. Appl. Math., vol. 127, no. 1, pp. 38–66, 2011.
J. E. Simpson, Gravity Currents: In the environment and the laboratory. Cambridge University Press, 1999.
P. Goswami, “Snow and ice animation methods in computer graphics,” Computer Graphics Forum, vol. 43, no. 2, p. e15059, 2024. [Online]. Available: [link]
B. Turnbull and P. Bartelt, “Mass and momentum balance model of a mixed flowing/powder snow avalanche,” Surv. Geophys., vol. 24, no. 5/6, pp. 465–477, 2003.
B. Sovilla, J. N. McElwaine, and M. Y. Louge, “The structure of powder snow avalanches,” C. R. Phys., vol. 16, no. 1, pp. 97–104, 2015.
D. Issler, “Dynamically consistent entrainment laws for depth-averaged avalanche models,” J. Fluid Mech., vol. 759, pp. 701–738, 2014.
B. Sovilla, P. Burlando, and P. Bartelt, “Field experiments and numerical modeling of mass entrainment in snow avalanches,” J. Geophys. Res. Earth Surf., vol. 111, no. F3, 2006. [Online]. DOI: 10.1029/2005jf000391
X. Li, B. Sovilla, C. Ligneau, C. Jiang, and J. Gaume, “Different erosion and entrainment mechanisms in snow avalanches,” Mech. Res. Commun., vol. 124, p. 103914, 2022.
P. Bartelt, Y. Bühler, O. Buser, and C. Ginzler, “Plume formation in powder snow avalanches,” in International Snow Science Workshop, 2013.
B. Sovilla, J. N. McElwaine, and A. Köhler, “The intermittency regions of powder snow avalanches,” J. Geophys. Res. Earth Surf., vol. 123, no. 10, pp. 2525–2545, 2018.
S. B. Savage and K. Hutter, “The dynamics of avalanches of granular materials from initiation to runout. part i: Analysis,” Acta Mech., vol. 86, no. 1-4, pp. 201–223, 1991. [Online]. DOI: 10.1007/bf01175958
M. Rauter, A. Kofler, A. Huber, and W. Fellin, “fasavagehutterfoam 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with openfoam,” Geosci. Model Dev., vol. 11, no. 7, pp. 2923–2939, 2018.
M. Rauter and Z. Tukovic, “A finite area scheme for shallow granular flows on three-dimensional surfaces,” Comput. Fluids, vol. 166, pp. 184–199, 2018.
A. Voellmy, “Über die zerstörungskraft von lawinen,” vol. 73, pp. 212–217, 1955.
M. Christen, J. Kowalski, and P. Bartelt, “Ramms: Numerical simulation of dense snow avalanches in three-dimensional terrain,” Cold Reg. Sci. Technol., vol. 63, no. 1-2, pp. 1–14, 2010.
Y. Xu, X. Wang, J. Wang, C. Song, T. Wang, Y. Zhang, J. Chang, J. J. Zhang, J. Kosinka, A. Telea, and X. Ban, “An implicitly stable mixture model for dynamic multi-fluid simulations,” in SIGGRAPH Asia 2023, 2023.
H. Rusche, “Computational fluid dynamics of dispersed two-phase flows at high phase fractions,” PhD Thesis, Imperial College London, 2002. [Online]. Available: [link]
J. Etienne, P. Saramito, and E. J. Hopfinger, “Numerical simulations of dense clouds on steep slopes: application to powder-snow avalanches,” Ann. Glaciol., vol. 38, pp. 379–383, 2004.
K. Ivanova, A. Caviezel, Y. Bühler, and P. Bartelt, “Numerical modelling of turbulent geophysical flows using a hyperbolic shear shallow water model: Application to powder snow avalanches,” Comput. Fluids, vol. 233, p. 105211, 2022.
P. Bartelt, O. Buser, C. Vera Valero, and Y. Bühler, “Configurational energy and the formation of mixed flowing/powder snow and ice avalanches,” Ann. Glaciol., vol. 57, no. 71, pp. 179–188, 2016.
S. Worley, “A cellular texture basis function,” in SIGGRAPH '96, 1996.
G. F. Fasshauer, Meshfree Approximation Methods with MATLAB. World Scientific Publishing, 2007.
K. Museth, “Vdb: High-resolution sparse volumes with dynamic topology,” ACM Trans. Graph., vol. 32, no. 3, pp. 1–22, 2013.
C. Greenshields, OpenFOAM v12 User Guide. The OpenFOAM Foundation, 2024. [Online]. Available: [link]
U.S. Geological Survey, “1/3rd arc-second digital elevation models (dems) - usgs national map 3dep downloadable data collection,” 2024. [Online]. Available: [link]
F. Nascimento, F. S. Sousa, and A. Paiva, “Digital animation of powdersnow avalanches,” ACM Trans. Graph., vol. 44, no. 4, 2025.
Publicado
30/09/2025
Como Citar
NASCIMENTO, Filipe; PAIVA, Afonso.
Digital 3D Animation of Powder-Snow Avalanches. In: WORKSHOP DE TESES E DISSERTAÇÕES - CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 38. , 2025, Salvador/BA.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 8-14.
