Normal Transformations for Overhang Reduction

  • Carlos Leal de Castro UFSC
  • Leonardo Koller Sacht UFSC

Resumo


We present a partial solution for the problem of reducing overhanging parts of a surface to 3D print it with minimal number of supports. We first present a summary about how a 3D printer works and why the overhanging problem happens. This review focuses on a specific type of 3D printer that uses polymer melted to print solids on cross-sectional layers. We then do a fast review of three-dimensional surface representation in a computer and its discrete representation. Then we present our minimization problem and show some test results, using libigl library and gptoolbox functions, to observe the solution of problem.

Palavras-chave: 3D printing, overhangs, normal field

Referências

Botsch, M.; et al. Polygon mesh processing. AK Peters/CRC Press, 2010.

DAI, C., WANG, C.L.C., WU, C., LEFEBVRE, S., FANG, G., LIU, Y. Support-free Volume Printing by Multi-axis Motion, ACM Transactions on Graphics, volume 33, number 5, 2014. DOI=10.1145/3197517.3201342 https://dl.acm.org/citation.cfm?doid=3197517.3201342

HU, R., LI, H., ZHANG, H., COHEN-OR, D., Approximate Pyramidal Shape Decomposition, ACM Transactions on Graphics (Proc. of SIGGRAPH Asia 2014), volume 33, number 6, 2014. DOI=10.1145/2661229.2661244 https://dl.acm.org/citation.cfm?id=2661244

JACOBSON, A., PANOZZO, D., libigl: A simple {C++ geometry processing library}. ONLINE: http://libigl.github.io/libigl/, 2017.

JACOBSON, A. et al. gptoolbox: Geometry Processing Toolbox. ONLINE: http://github.com/alecjacobson/gptoolbox, 2018.

KARASIK, E., FATTAL, R., WERMAN, M.,Object Partitioning for Support-Free 3D-Printing, Computer Graphics Forum, volume 38, number 2, 2019. DOI=10.1111/cgf.13639https://doi.org/10.1111/cgf.13639

MARTÍNEZ, J., HORNUS, S., SONG, H., LEFEBVRE, S., Polyhedral Voronoi Diagrams for Additive Manufacturing, ACM Transactions on Graphics, volume 37, number 4, 2015. DOI=DOI : 10.1145/3197517.3201343 https://dl.acm.org/citation.cfm?doid=3197517.3201343

SORKINE, O., ALEXA, M.,As-Rigid-As-Possible Surface Modeling, Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, 2007. DOI= 10.2312/SGP/SGP07/109-116 http://dx.doi.org/10.2312/SGP/SGP07/109-116

VANEK, J., GALICIA, J.A.C., BENES, B.,Clever Support: Efficient Support Structure Generation for Digital Fabrication, Computer Graphics Forum, volume 33, number 5, p. 117-125 2014. DOI=10.1111/cgf.12437 https://doi.org/10.1111/cgf.12437

WANG, W. M., ZANNI, C., KOBBELT, L., Improved Surface Quality in 3D Printing by Optimizing the Printing Direction, Proceedings of the 37th Annual Conference of the European Association for Computer Graphics, 2016. DOI=10.1111/cgf.12811, https://doi.org/10.1111/cgf.12811

YAGOU, H., OHTAKE, Y., BELYAEV, A., Mesh Smoothing via Mean and Median Filtering Applied to Face Normals, Proceedings of the Geometric Modeling and Processing --- Theory and Applications (GMP'02), 2002. DOI= 10.1109/GMAP.2002.1027503, https://doi.org/10.1109/GMAP.2002.1027503

YAO, M., CHEN, Z., LUO, L., WANG, R., WANG, H., Level-set-based Partitioning and Packing Optimization of a Printable Model, ACM Transactions on Graphics (Proc. of SIGGRAPH Asia 2015), volume 34, number 6, 2015. DOI=10.1145/2816795.2818064, https://doi.org/10.1145/2816795.2818064

ZHANG, X., LE, X., PANOTOPOULOU, A., WHITING, E., WANG, C.C.L., Perceptual Models of Preference in 3D Printing Direction, ACM Transactions on Graphics (Proc. of SIGGRAPH Asia 2015), volume 34, number 6, 2015. DOI= 10.1145/2816795.2818121, https://doi.org/10.1145/2816795.2818121

ZHENG, Y., FU, Y., BELYAEV, A., Bilateral Normal Filtering for Mesh Denoising, IEEE Transactions on Visualization and Computer Graphics, volume 17, number 10, 2011. DOI= 10.1109/TVCG.2010.264, https://doi.org/10.1109/TVCG.2010.264
Publicado
28/10/2019
CASTRO, Carlos Leal de; SACHT, Leonardo Koller. Normal Transformations for Overhang Reduction. In: WORKSHOP DE TRABALHOS EM ANDAMENTO - CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 32. , 2019, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 148-151. DOI: https://doi.org/10.5753/sibgrapi.est.2019.8316.