Object-based Method for Identifying New Constructions around Water Reservoirs: Preliminary Results

  • Nayereh Hamidishad USP
  • Roberto Cesar Junior USP

Resumo


Identifying new constructions in large cities can be done simply, quickly, and at low cost by applying image processing techniques on time-series remote sensing (RS) images and producing land cover maps. In recent years, object-based (OB) image classification has attracted significant attention as a method for land cover mapping. This method consists of two steps: segmentation and classification. In this research, we will develop a new approach based on image processing techniques to be utilized in the OB classification method for the analysis of urban growth. In this approach, we propose a multi-phase segmentation for the segmentation step and a rule-based method for the classification step. Besides speeding up the process of OB classification, the accuracy of the final preliminary results is another advantage of the proposed approach. Moreover, for collecting RS images, a two-zoom level data collection is adopted using an open source RGB RS database. An important application of analyzing RS images is the detection of non-authorized communities formation around water reservoirs. Therefore, in our preliminary experiments, we selected three different regions around Guarapiranga reservoir in Sao Paulo, Brazil, for collecting our RS images.

Palavras-chave: Image processing, land cover mapping, remote sensing, object-based method.

Referências

Rozanda, N. E.; Ismail, M.; Permana, I. Segmentation google earth imagery using k-means clustering and normalized rgb color space. Computational Intelligence in Data Mining-Volume 1. Springer, pp. 375-386, 2015. https://doi.org/10.1007/978-81-322-2205-7_36

Liau, Y.-T. Hierarchical segmentation framework for identifying natural vegetation: a case study of the tehachapi mountains, california. Remote Sensing, vol. 6, no. 8, pp. 7276-7302, 2014. https://doi.org/10.3390/rs6087276

Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the use of google earth imagery and object-based methods in land use/cover mapping. Remote Sensing, vol. 5, no. 11, pp. 6026-6042, 2013. https://doi.org/10.3390/rs5116026

Jenson, J. R.Introductory digital image processing: a remote sensing perspective, 2015. https://doi.org/

Garouani, A. El.; Mulla, D. J.; Garouani, S. El.; Knight, J. Analysis of urban growth and sprawl from remote sensing data: Case of fez, morocco. International Journal of Sustainable Built Environment, vol. 6, no. 1, pp. 160-169, 2017. https://doi.org/10.1016/j.ijsbe.2017.02.003

Blaschke, T.; Hay, G. J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R. Q.; Van der Meer, F.; Van der Werff, H.; Van Coillie, F. Geographic object-based image analysis towards a new paradigm. ISPRS journal of photogrammetry and remote sensing, vol. 87, pp. 180-191, 2014.https://doi.org/10.1016/j.isprsjprs.2013.09.014

Myint, S. W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote sensing of environment, vol. 115, no. 5, pp. 1145-1161, 2011. https://doi.org/10.1016/j.rse.2010.12.017

Silveira, E. M.; Silva, S. H. G.; Acerbi-Junior, F. W.; Carvalho, M. C..; Carvalho, L. M. T.; Scolforo, J. R. S.; Wulder, M. A.; Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment. International Journal of Applied Earth Observation and Geoinformation, vol. 78, pp. 175-188, 2019. https://doi.org/10.1016/j.jag.2019.02.004

Silva Junior, C. A. d.; Nanni, M. R.; Oliveira-Junior, J. F. d.; Cezar, E.; Teodoro, P. E.; Delgado, R. C.; Shiratsuchi, L. S.; Shakir, M.; Chicati, M. L. Object-based image analysis supported by data mining to discriminate large areas of soybean, International journal of digital earth, vol. 12, no. 3, pp. 270-292, 2019. https://doi.org/10.1080/17538947.2017.1421722

Tong, H.; Maxwell, T.; Zhang, Y.; Dey, V. A supervised and fuzzy based approach to determine optimal multi-resolution image segmentation parameters. Photogrammetric Engineering Remote Sensing, vol. 78, no. 10, pp. 1029-1044, 2012. https://doi.org/10.14358/PERS.78.10.1029

Zhang, H.; Fritts, J. E.; Goldman, S. A. Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding, vol. 110, no. 2, pp. 260-280, may 2008. https://doi.org/10.1016/j.cviu.2007.08.003

Ziaei, Z.; Pradhan, B.; Mansor, S. B. A rule-based parameter aided with object-based classification approach for extraction of building and roads from worldview-2 images. Geocarto International, vol. 29, no. 5, pp. 554-569, 2014. https://doi.org/10.1080/10106049.2013.819039

Kruse, T. Crime organizado coordena invasões em áreas de mananciais de São Paulo. https://sustentabilidade.estadao.com.br/noticias/geral,crime-organizado-coordena-invasoes-em-areas-de-mananciais-de-sao-paulo,70002884543. https://doi.org/

eCognition Developer 9.3.1 User Guide, Trimble Germany GmbH, 2018. https://doi.org/

Whyte, A.; Ferentinos, K. P.; Petropoulos, G. P. A new synergistic approach for monitoring wetlands using sentinels-1 and 2 data with object-based machine learning algorithms. Environmental Modelling Software, vol. 104, pp. 4054, 2018.https://doi.org/10.1016/j.envsoft.2018.01.023

Liu, S.; Qi, Z.; Li, X.; Yeh, A. G. O. Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and sar data. Remote Sensing, vol. 11, no. 6, p. 690, 2019. https://doi.org/10.3390/rs11060690
Publicado
28/10/2019
HAMIDISHAD, Nayereh; CESAR JUNIOR, Roberto. Object-based Method for Identifying New Constructions around Water Reservoirs: Preliminary Results. In: WORKSHOP DE TRABALHOS EM ANDAMENTO - CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 32. , 2019, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 172-175. DOI: https://doi.org/10.5753/sibgrapi.est.2019.8322.

Artigos mais lidos do(s) mesmo(s) autor(es)