Uncertainty quantification in reservoir history matching using the ensemble smoother

  • Thiago M. D. Silva PUC-Rio
  • Abelardo Barreto PUC-Rio
  • Sinesio Pesco PUC-Rio

Resumo


Ensemble-based methods have been widely used in uncertainty quantification, particularly, in reservoir history matching. The search for a more robust method which holds high nonlinear problems is the focus for this area. The Ensemble Kalman Filter (EnKF) is a popular tool for these problems, but studies have noticed uncertainty in the results of the final ensemble, high dependent on the initial ensemble. The Ensemble Smoother (ES) is an alternative, with an easier impletation and low computational cost. However, it presents the same problem as the EnKF. The Ensemble Smoother with Multiple Data Assimilation (ES-MDA) seems to be a good alternative to these ensemble-based methods, once it assimilates tha same data multiple times. In this work, we analyze the efficiency of the Ensemble Smoother and the Ensemble Smoother with multiple data assimilation in a reservoir histoy matching of a turbidite model with 3 layers, considering permeability estimation and data mismatch.

Palavras-chave: Reservoir history matching, Uncertainty quantification, Ensemble smoother, Ensemble smoother with multiple data assimilation, Reservoir engineering.

Referências

Cardona, Y.A. Object-based modeling of turbidite lobes using single-valued B-Splines, M.S. thesis, Dept. of Mathematics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, 2016, doi: 10.17771/PUCRio.acad.29377.

A. Emerick and A. Reynolds, ”Ensemble smoother with multiple data assimilation”, Computers & Geosciences, vol. 55, pp. 3-15, Jun. 2013, doi: 10.1016/j.cageo.2012.03.011.

A. Emerick and A. Reynolds, ”Investigation of the sampling perfor mance of ensemble-based methods with a simple reservoir model”, Computational Geosciences, vol. 17, pp. 325-350, Mar. 2013 doi: 10.1007/s10596-012-9333-z.

G. Evensen, ”The ensemble kalman filter: theoretical formulation and practical implementation”, Ocean Dynamics. vol. 53, no. 4, pp. 343-367, Nov. 2003, doi: 10.1007/s10236-003-0036-9.

G. Gao and A. Reynolds, ”An improved implementation of the LBFGS algorithm for automatic history matching”, SPE Journal. vol. 11, pp. 5-17, Mar. 2006, doi: 10.2118/90058-PA.

G. Naevdal, T. Mannseth and E. H. Vefring, ”Near-well reservoir monitoring through ensemble kalman filter”, SPE/DOE Improved Oil Recovery Symposium, April 2002, doi: 10.2118/75235-MS.

R. E. Kalman, ”A New Approach to Linear Filtering and Prediction Problems”, Journal of Basic Engineering, vol. 82, pp. 35-45, Mar. 1960, doi: 10.1115/1.3662552.

R. J. Lorentzen, F. K. Kare, F. Jonny, A. Lage, G. Naevdal and H. E. Vefring, ”Underbalanced and low-head drilling operations: real time interpretation of measured data and operational support”, SPE Annual Technical Conference and Exhibition, 2001, doi: 10.2118/71384-MS.

D. Oliver, A. Reynolds and N. Liu, ”Inverse theory for petroleum reservoir characterization and history matching”, Cambridge University Press, 2008.

A. Reynolds, and G. Li, ”Iterative forms of the ensemble kalman filter”, ECMOR X - 10th European Conference on the Mathematics of Oil Recovery, Sep. 2006, doi: 10.3997/2214-4609.201402496.

M. Shirangi and A. Emerick, ”An Improved TSVD-based Levenberg Marquardt algorithm for history matching and comparison with Gauss Newton” Journal of Petroleum Science and Engineering, vol. 143, pp. 258-271, Jul. 2016, doi: 10.1016/j.petrol.2016.02.026.

P. J. Van Leeuwen and G. Evensen, ”Data assimilation and inverse methods in terms of a probabilistic formulation”, Monthly Weather Review, vol. 124, pp. 2898-2913, Nov. 1996, doi: 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2.
Publicado
28/10/2019
SILVA, Thiago M. D.; BARRETO, Abelardo; PESCO, Sinesio. Uncertainty quantification in reservoir history matching using the ensemble smoother. In: WORKSHOP DE APLICAÇÕES INDUSTRIAIS - CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 32. , 2019, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 223-229. DOI: https://doi.org/10.5753/sibgrapi.est.2019.8335.