The Impact of Hyperledger Fabric Setup on Blockchain Performance when Using Large Volumes of Heterogeneous Medical Data

  • Ana Caroline Fernandes Spengler USP
  • Paulo Sérgio Lopes de Souza USP


Blockchain can be seen as a data distribution tool that guarantees immutability. As its use continues to expand across various sectors, it becomes increasingly important to investigate Blockchain’s performance concerning its different components and data originating from diverse application domains. This study explores the blockchain ecosystem, focusing on block creation, validation, network size, and partition processes. The chosen methodology involves utilizing Hyperledger Fabric for sharing medical information. To assess performance, Hyperledger Caliper was employed to collect throughput and latency. Among the key findings, we show that segregating the network into channels impacts the performance of Blockchain, mainly when the number of participating nodes increases. Sizes and timeouts to create new blocks influence the system’s performance. This paper contributes to developers by highlighting factors impacting blockchain-based applications’ performance.


Al-Sumaidaee, G., Alkhudary, R., Zilic, Z., and Swidan, A. (2023). Performance analysis of a private blockchain network built on hyperledger fabric for healthcare. Information Processing Management, 60(2):103160.

Antonopoulos, A. M. (2017). Mastering Bitcoin: Programming the Open Blockchain. O’Reilly Media, Inc., 2nd edition.

Baliga, A., Solanki, N., Verekar, S., Pednekar, A., Kamat, P., and Chatterjee, S. (2018). Performance characterization of hyperledger fabric. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pages 65–74.

Chung, G., Desrosiers, L., Gupta, M., Sutton, A., Venkatadri, K., Wong, O., and Zugic, G. (2019). Performance tuning and scaling enterprise blockchain applications.

Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., and Tan, K.-L. (2017). Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17, pages 1085–1100, New York, NY, USA. ACM.

Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F., and Li, L. (2022). Cryptocurrency trading: a comprehensive survey.

Foundation, A. S. (2020). Apache couchdb. Acessado em 13/08/2023.

Honar Pajooh, H., Rashid, M. A., Alam, F., and Demidenko, S. (2022). Experimental performance analysis of a scalable distributed hyperledger fabric for a large-scale iot testbed. Sensors, 22(13).

Hyperledger (2019). hyperledger-fabricdocs documentation. Acessado em 13/08/2023.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., and Mark, R. G. (2016). Mimic-iii, a freely accessible critical care database. Sci Data 3.

Project, C. (2020). Hyperledger caliper documentation. Acessado em 13/08/2020.

Roehrs, A., da Costa, C. A., da Rosa Righi, R., da Silva, V. F., Goldim, J. R., and Schmidt, D. C. (2019). Analyzing the performance of a blockchain-based personal health record implementation. Journal of Biomedical Informatics, 92:103140.

Shen, B., Guo, J., and Yang, Y. (2019). Medchain: Efficient healthcare data sharing via blockchain. Applied Sciences, 9(6).

Spengler, A. C. and Souza, P. S. (2021a). Avaliação de desempenho do hyperledger fabric com banco de dados para o armazenamento de grandes volumes de dados médicos. In Anais do XX Workshop em Desempenho de Sistemas Computacionais e de Comunicação, pages 61–72, Porto Alegre, RS, Brasil. SBC.

Spengler, A. C. F. and Souza, P. S. L. d. (2021b). The impact of using couchdb on hyperledger fabric performance for heterogeneous medical data storage. In 2021 XLVII Latin American Computing Conference (CLEI), pages 1–10.
SPENGLER, Ana Caroline Fernandes; SOUZA, Paulo Sérgio Lopes de. The Impact of Hyperledger Fabric Setup on Blockchain Performance when Using Large Volumes of Heterogeneous Medical Data. In: SIMPÓSIO EM SISTEMAS COMPUTACIONAIS DE ALTO DESEMPENHO (SSCAD), 24. , 2023, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 133-144. DOI: