Functionalities as a Service - An Approach to Conciliate Interoperability and Data Reduction in E-Health

  • João Pedro de S. J. da Costa UFJF
  • Mário A. R. Dantas UFJF
  • José Maria N. David UFJF
  • Fernando de Almeida Silva UFJF

Resumo


Interoperability and data reduction have been proven beneficial to health and medical applications that deal with large datasets. Still, the conflicts between these qualities turned out to be a problem for their conciliation. This paper presents an edge-fog-cloud architecture that offers functionalities as a service. These functionalities can guarantee certain qualities depending on the necessities of the client, such as, in our case, interoperability and data reduction. With the use of context simulators, we found that it was possible to significantly increase the output of data delivered to the servers, and decrease the size of the data that transitions in the network and is stored in the servers’ databases, without interfering with the syntactic interoperability.

Referências

AbuKhousa, E., Mohamed, N., and Al-Jaroodi, J. (2012). e-health cloud: opportunities and challenges. Future internet, 4(3):621–645.

Costa, J. P., Dantas, M. A., and David, J. M. (2021). Uma abordagem computacional em ambientes assistidos baseada em atividades físicas e biometeorologia. In Anais Estendidos do XXI Simpósio Brasileiro de Computação Aplicada à Saúde, pages 121–126, Porto Alegre, RS, Brasil. SBC.

Idrees, S. K. and Idrees, A. K. (2022). New fog computing enabled lossless eeg data compression scheme in iot networks. Journal of Ambient Intelligence and Humanized Computing, pages 1–14.

Kahdim, A. N. and Manaa, M. E. (2022). Design an efficient internet of things data compression for healthcare applications. Bulletin of Electrical Engineering and Informatics, 11(3):1678–1686.

Rinty, M. R., Prodhan, U. K., and Rahman, M. M. (2022). A prospective interoperable distributed e-health system with loose coupling in improving healthcare services for developing countries. Array, 13:100114.

Rubí, J. N. S. and Gondim, P. R. d. L. (2020). Interoperable internet of medical things platform for e-health applications. International Journal of Distributed Sensor Networks, 16(1):1550147719889591.

Scarpato, N., Pieroni, A., Di Nunzio, L., and Fallucchi, F. (2017). E-health-iot universe: A review. management, 21(44):46.

Schriml, L. M., Mitraka, E., Munro, J., Tauber, B., Schor, M., Nickle, L., Felix, V., Jeng, L., Bearer, C., Lichenstein, R., et al. (2019). Human disease ontology 2018 update: classification, content and workflow expansion. Nucleic acids research, 47(D1):D955–D962.

Shull, J. G. (2019). Digital health and the state of interoperable electronic health records. JMIR medical informatics, 7(4):e12712.
Publicado
17/10/2023
COSTA, João Pedro de S. J. da; DANTAS, Mário A. R.; DAVID, José Maria N.; SILVA, Fernando de Almeida. Functionalities as a Service - An Approach to Conciliate Interoperability and Data Reduction in E-Health. In: SIMPÓSIO EM SISTEMAS COMPUTACIONAIS DE ALTO DESEMPENHO (SSCAD), 24. , 2023, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 193-204. DOI: https://doi.org/10.5753/wscad.2023.235668.