Simulação de Redes Reguladoras de Genes com Lógica Booleana e Limiar em Plataformas Alto Desempenho

  • Wallace Rosa University Federal of Viçosa
  • Hector Baranda University Federal of Viçosa
  • Michael Canesche University Federal of Viçosa
  • Marcelo Menezes University Federal of Viçosa
  • Lucas Bragança University Federal of Viçosa
  • Salles Magalhaes University Federal of Viçosa
  • José Augusto Nacif University Federal of Viçosa
  • Ricardo Ferreira University Federal of Viçosa

Abstract


Gene regulatory networks are graph-based models widely used to study cell behavior, cell differentiation processes, or the treatment and evolution of the disease. A network is a graph where each node is a gene, and the gene behavior is described by boolean equations. The network simulations evaluate these equations several times throughout the execution. The network states’ transitions are the basic step in gene regulatory algorithms. This paper proposes a study of the CPU, GPU and FPGA implementations of the basic operation which is the calculation of the next state. We explore OpenMP and AVX vectorization compiler-based approaches for processors. Moreover, we propose a new dynamic overlay architecture to simplify the use of FPGA solutions. In addition, we transform the Boolean equation in threshold logic. Finally, we evaluate 16 gene regulatory networks used in the literature. The experimental results show a speed-up from 3× to 90× with respect to the CPU times. The AVX/OpenMP, GPU and FPGA implementations report a speed-up of 3x, 57.3x, and 86.7x, respectively.

References

Aldana, M. (2003). Boolean dynamics of networks with scale-free topology. Physica D: Nonlinear Phenomena, 185(1):45–66.

Borelli, F. F., de Camargo, R. Y., Martins, D. C., and Rozante, L. C. (2013). Gene regulatory networks inference using a multi-gpu exhaustive search algorithm. BMC bioinformatics, 14(18):S5.

Campos, R. R., Ferreira, R., Vendramini, J. C. G., Martins, M. L., et al. (2011). Simulation of scale free gene regulatory networks based on threshold functions on gpu. In Simposio de Sistemas Computacionais de Alto Desempenho (WSCAD). IEEE.

da Silva, L. B., Almeida, D., Nacif, J. A. M., Sánchez-Osorio, I., Hernández-Martı́nez, C. A., and Ferreira, R. (2017). Exploring the dynamics of large-scale gene regulatory networks using hardware acceleration on a heterogeneous cpu-fpga platform. In IEEE Int. Conf. on ReConFigurable Computing and FPGAs (ReConFig).

Darabos, C., Di Cunto, F., Tomassini, M., Moore, J. H., Provero, P., and Giacobini, M. (2011). Additive functions in boolean models of gene regulatory network modules. PloS one, 6(11):e25110.

Davidson, E. and Levin, M. (2005). Gene regulatory networks. Proceedings of the National Academy of Sciences, 102(14):4935–4935.

De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. Journal of computational biology, 9(1):67–103.

Ferreira, R. and Vendramini, J. (2010). Fpga-accelerated attractor computation of scale free gene regulatory networks. In IEEE Field Programmable Logic and Applications FPL.

Fumia, H. F. and Martins, M. L. (2013). Boolean network model for cancer pathways:

predicting carcinogenesis and targeted therapy outcomes. PloS one, 8(7):e69008.

Haupt, S., Berger, M., Goldberg, Z., and Haupt, Y. (2003). Apoptosis-the p53 network. Journal of cell science, 116(20):4077–4085.

Jacob, V. V., de Resende Ferreira, C., and Ferreira, R. (2012). Gpu optimization techniques applied to scale free gene regulatory networks based on threshold function. In Simposio de Sistemas Computacionais de Alto Desempenho (WSCAD), pages 57–64. IEEE.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of theoretical biology, 22(3):437–467.

Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. OUP USA.

Muroga, S. (1971). Threshold logic and its applications.

Neutzling, A., Martins, M., Ribas, R., and Reis, A. (2013). An efficient method to threshold logic functions identification. In SOUTH SYMP. ON MICROELECTRONICS.

Pournara, I., Bouganis, C.-S., and Constantinides, G. A. (2005). Fpga-accelerated bayesian learning for reconstruction of gene regulatory networks. In Field Programmable Logic and Applications (FPL). IEEE.

Purandare, M., Polig, R., and Hagleitner, C. (2017). Accelerated analysis of boolean gene regulatory networks. In IEEE Field Programmable Logic and Applications (FPL).

Trinh, H.-C., Le, D.-H., and Kwon, Y.-K. (2014). Panet: a gpu-based tool for fast parallel analysis of robustness dynamics and feed-forward/feedback loop structures in largescale biological networks. PloS one, 9(7).

UFV (2019). Redes reguladoras. https://github.com/Wallace-F-Rosa/redes_reg_genes.
Published
2019-11-08
ROSA, Wallace; BARANDA, Hector; CANESCHE, Michael; MENEZES, Marcelo; BRAGANÇA, Lucas; MAGALHAES, Salles; NACIF, José Augusto; FERREIRA, Ricardo. Simulação de Redes Reguladoras de Genes com Lógica Booleana e Limiar em Plataformas Alto Desempenho. In: SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS (SSCAD), 20. , 2019, Campo Grande. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 334-345. DOI: https://doi.org/10.5753/wscad.2019.8680.