Ciência de Dados Aplicada à COVID-19: Os Dados Implícitos em Meio à Pandemia
Abstract
Sars-Cov-2 drastically altered the standard of living of the global population and, with great prominence, the Brazilian. In a country of enormous dimensions like this, its socioeconomic inequalities are also notorious. In this context, each Federative Unit fights the impacts of the disease and reacts to it uniquely. To understand the effects and spread of the COVID-19, the analysis of statistical data based on data science is of great value in the current and future scenario. Initial experimental results indicate that the pandemic and its effects are closely related to the Brazilian states' discrepant realities. Social, economic, and educational indices can help to clarify points related to this issue.References
Ans inclui teste sorológico para covid-19 no rol de coberturas obrigatórias. http://www.ans.gov.br/aans/noticias-ans/coronavirus-covid-19/coronavirus-todas-as-noticias/5648-ans-inclui-teste-sorologico-para-covid-19-no-rol-de-coberturas-obrigatorias. Accessed: 2020-08-10.
Grid5000, 2020. https://www.grid5000.fr/w/Grid5000:Home. Accessed: 2020-08-10.
Sistema de computação petaópica do sinapad, 2020. https://sdumont.lncc.br/. Accessed: 2020-08-10.
do Amaral Schenkel, M. (2020). Por que as desigualdades no brasil são ainda mais visíveis no cenário de enfrentamento ao covid-19? Instituto de Filosoa e Ciências Humanas (IFCH) — UFRGS.
do Nascimento, M. G., Iorio, G., Thomé, T. G., Medeiros, A. A., Mendonça, F. M., Campos, F. A., David, J. M., Ströele, V., and Dantas, M. A. (2020). Covid-19: A digital transformation approach to a public primary healthcare environment. Technical report, EasyChair.
Han, J., Kamber, M., and Pei, J. (2011). Data mining concepts and techni- ques third edition. The Morgan Kaufmann Series in Data Management Systems, pages 83–124.
Hassanin, A. (2020). Coronavirus origins: genome analysis suggests two viruses may have combined. In World Economic Forum.
Koyama, T., Platt, D., and Parida, L. (2020). Variant analysis of sars- cov-2 genomes. Bulletin of the World Health Organization, 98(7):495.
Lam, T. T.-Y., Jia, N., Zhang, Y.-W., Shum, M. H.-H., Jiang, J.-F., Zhu, H.-C., Tong, Y.-G., Shi, Y.-X., Ni, X.-B., Liao, Y.-S., et al. (2020). Identifying sars- cov-2-related coronaviruses in malayan pangolins. Nature, pages 1–4.
Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., Castro, I., Razi, A., Boulos, M. N. K., Weller, A., et al. (2020). Leveraging data science to combat covid-19: A comprehensive review.
Patel, J., Nielsen, F., Badiani, A., Assi, S., Unadkat, V., Patel, B., Ra- vindrane, R., and Wardle, H. (2020). Poverty, inequality and covid-19: the forgotten vulnerable. Public health, 183:110.
Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha, S., Halder, A., Rix, A., Barker, D., et al. (2020). Predictions, role of in- terventions and effects of a historic national lockdown in india's response to the covid- 19 pandemic: data science call to arms. Harvard data science review, 2020(Suppl 1).
San Lau, L., Samari, G., Moresky, R. T., Casey, S. E., Kachur, S. P., Roberts, L. F., and Zard, M. (2020). Covid-19 in humanitarian settings and lessons learned from past epidemics. Nature Medicine, 26(5):647–648.
Tuite, A. R., Fisman, D. N., and Greer, A. L. (2020). Mathematical mo- delling of covid-19 transmission and mitigation strategies in the population of ontario, canada. CMAJ, 192(19):E497–E505.
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., et al. (2020). A new coronavirus associated with human respiratory disease in china. Nature, 579(7798):265–269.
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798):270–273.
Grid5000, 2020. https://www.grid5000.fr/w/Grid5000:Home. Accessed: 2020-08-10.
Sistema de computação petaópica do sinapad, 2020. https://sdumont.lncc.br/. Accessed: 2020-08-10.
do Amaral Schenkel, M. (2020). Por que as desigualdades no brasil são ainda mais visíveis no cenário de enfrentamento ao covid-19? Instituto de Filosoa e Ciências Humanas (IFCH) — UFRGS.
do Nascimento, M. G., Iorio, G., Thomé, T. G., Medeiros, A. A., Mendonça, F. M., Campos, F. A., David, J. M., Ströele, V., and Dantas, M. A. (2020). Covid-19: A digital transformation approach to a public primary healthcare environment. Technical report, EasyChair.
Han, J., Kamber, M., and Pei, J. (2011). Data mining concepts and techni- ques third edition. The Morgan Kaufmann Series in Data Management Systems, pages 83–124.
Hassanin, A. (2020). Coronavirus origins: genome analysis suggests two viruses may have combined. In World Economic Forum.
Koyama, T., Platt, D., and Parida, L. (2020). Variant analysis of sars- cov-2 genomes. Bulletin of the World Health Organization, 98(7):495.
Lam, T. T.-Y., Jia, N., Zhang, Y.-W., Shum, M. H.-H., Jiang, J.-F., Zhu, H.-C., Tong, Y.-G., Shi, Y.-X., Ni, X.-B., Liao, Y.-S., et al. (2020). Identifying sars- cov-2-related coronaviruses in malayan pangolins. Nature, pages 1–4.
Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., Castro, I., Razi, A., Boulos, M. N. K., Weller, A., et al. (2020). Leveraging data science to combat covid-19: A comprehensive review.
Patel, J., Nielsen, F., Badiani, A., Assi, S., Unadkat, V., Patel, B., Ra- vindrane, R., and Wardle, H. (2020). Poverty, inequality and covid-19: the forgotten vulnerable. Public health, 183:110.
Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha, S., Halder, A., Rix, A., Barker, D., et al. (2020). Predictions, role of in- terventions and effects of a historic national lockdown in india's response to the covid- 19 pandemic: data science call to arms. Harvard data science review, 2020(Suppl 1).
San Lau, L., Samari, G., Moresky, R. T., Casey, S. E., Kachur, S. P., Roberts, L. F., and Zard, M. (2020). Covid-19 in humanitarian settings and lessons learned from past epidemics. Nature Medicine, 26(5):647–648.
Tuite, A. R., Fisman, D. N., and Greer, A. L. (2020). Mathematical mo- delling of covid-19 transmission and mitigation strategies in the population of ontario, canada. CMAJ, 192(19):E497–E505.
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., et al. (2020). A new coronavirus associated with human respiratory disease in china. Nature, 579(7798):265–269.
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798):270–273.
Published
2020-10-21
How to Cite
SILVA, Gabriel; STRÖELE, Victor; DANTAS, Mário; MENDONÇA, Fabrício.
Ciência de Dados Aplicada à COVID-19: Os Dados Implícitos em Meio à Pandemia. In: UNDERGRADUATE RESEARCH WORKSHOP - SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS (SSCAD), 21. , 2020, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2020
.
p. 78-85.
DOI: https://doi.org/10.5753/wscad_estendido.2020.14092.
