Aprendizado Federado e Deep Q-Network habilitando VANTs como Infraestrutura em Redes 6G
Resumo
A implantação de Veículos Aéreos Não Tripulados (VANTs) como estações base aéreas é um habilitador chave para diferentes casos de uso emergentes das redes 6G. Neste contexto, este artigo apresenta uma proposição para o posicionamento de VANTs atuando como infraestrutura de redes móveis assistidas por Federated Deep Learning (FDL) e Deep Q-Network (DQN). A proposta é baseada em um paradigma de aprendizado descentralizado que melhora a sobrecarga de comunicação com foco na preservação da privacidade e adaptação dinâmica dos VANTs ao ambiente de propagação das redes móveis.Referências
Brasil 6G (2021a). Casos de Uso e Requisitos para as Redes 6G. Disponível em: https://inatel.br/brasil6g. Acesso em: 07/03/2023.
Brasil 6G (2021b). Relatório Técnico das Atividades 5.1 e 5.2 Projeto e Seleção de Componentes, Plataformas, Ferramentas e Especificação. Disponível em: https://inatel.br/brasil6g. Acesso em: 07/03/2023.
Brik, B., Ksentini, A., and Bouaziz, M. (2020). Federated Learning for UAVs-Enabled Wireless Networks: Use Cases, Challenges, and Open Problems. IEEE Access, 8:53841–53849.
Hu, J., Zhang, H., Song, L., Han, Z., and Poor, H. V. (2020). Reinforcement Learning for a Cellular Internet of UAVs: Protocol Design, Trajectory Control, and Resource Management. IEEE Wireless Communications, 27(1):116–123.
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He, B. (2021). A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering.
Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., and Miao, C. (2020). Federated Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Communications Surveys Tutorials, 22(3):2031–2063.
Liu, L., Zhao, Y., Qi, F., Zhou, F., Xie, W., He, H., and Zheng, H. (2022). Federated Deep Reinforcement Learning for Joint AeBSs Deployment and Computation Offloading in Aerial Edge Computing Network. Electronics, 11:3641.
Mahlool, D. H. and Abed, M. H. (2022). A Comprehensive Survey on Federated Learning: Concept and Applications. In Mobile Computing and Sustainable Informatics, pages 539–553, Singapore. Springer Nature Singapore.
P G, S. and Magarini, M. (2021). Reinforcement Learning Aided UAV Base Station Location Optimization for Rate Maximization. Electronics, 10:2953.
Shahbazi, A., Donevski, I., Nielsen, J. J., and Di Renzo, M. (2022). Federated Reinforcement Learning UAV Trajectory Design for Fast Localization of Ground Users. In 2022 30th European Signal Processing Conference (EUSIPCO), pages 663–666.
Brasil 6G (2021b). Relatório Técnico das Atividades 5.1 e 5.2 Projeto e Seleção de Componentes, Plataformas, Ferramentas e Especificação. Disponível em: https://inatel.br/brasil6g. Acesso em: 07/03/2023.
Brik, B., Ksentini, A., and Bouaziz, M. (2020). Federated Learning for UAVs-Enabled Wireless Networks: Use Cases, Challenges, and Open Problems. IEEE Access, 8:53841–53849.
Hu, J., Zhang, H., Song, L., Han, Z., and Poor, H. V. (2020). Reinforcement Learning for a Cellular Internet of UAVs: Protocol Design, Trajectory Control, and Resource Management. IEEE Wireless Communications, 27(1):116–123.
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He, B. (2021). A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering.
Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., and Miao, C. (2020). Federated Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Communications Surveys Tutorials, 22(3):2031–2063.
Liu, L., Zhao, Y., Qi, F., Zhou, F., Xie, W., He, H., and Zheng, H. (2022). Federated Deep Reinforcement Learning for Joint AeBSs Deployment and Computation Offloading in Aerial Edge Computing Network. Electronics, 11:3641.
Mahlool, D. H. and Abed, M. H. (2022). A Comprehensive Survey on Federated Learning: Concept and Applications. In Mobile Computing and Sustainable Informatics, pages 539–553, Singapore. Springer Nature Singapore.
P G, S. and Magarini, M. (2021). Reinforcement Learning Aided UAV Base Station Location Optimization for Rate Maximization. Electronics, 10:2953.
Shahbazi, A., Donevski, I., Nielsen, J. J., and Di Renzo, M. (2022). Federated Reinforcement Learning UAV Trajectory Design for Fast Localization of Ground Users. In 2022 30th European Signal Processing Conference (EUSIPCO), pages 663–666.
Publicado
22/05/2023
Como Citar
OLIVEIRA, Renan R. de; S. E SILVA, Rogério; FREITAS, Leandro A.; OLIVEIRA-JR, Antonio.
Aprendizado Federado e Deep Q-Network habilitando VANTs como Infraestrutura em Redes 6G. In: WORKSHOP DE REDES 6G (W6G), 3. , 2023, Brasília/DF.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2023
.
p. 1-6.
DOI: https://doi.org/10.5753/w6g.2023.719.