Accessibility in the Metaverse: Are We Prepared?
Resumo
Metaverso é um novo paradigma que está em construção onde plataformas sociais e imersivas de Realidade Virtual serão compatíveis com diversos tipos de aplicações. No entanto, soluções devem ser desenvolvidas para garantir que pessoas com deficiência acessem o Metaverso. Este trabalho tem como objetivo apresentar um panorama das pesquisas sobre acessibilidade de sistemas imersivos e traçar desafios e oportunidades para que a comunidade de Interação Humano-Computador possa refletir e intensificar as pesquisas nesta área.
Palavras-chave:
Metaverso, Acessibilidade, Interação Humano-Computador, IHC
Referências
Ali, S. F., Noor, S., Azmat, S. A., Noor, A. U., and Siddiqui, H. (2017). Virtual reality as a physical training assistant. In 2017 International Conference on Information and Communication Technologies (ICICT), pages 191–196.
Augstein, M. and Neumayr, T. (2019). A Human-Centered Taxonomy of Interaction Modalities and Devices. Interacting with Computers, 31(1):27–58.
Barteit, S., Lanfermann, L., Bärnighausen, T., Neuhann, F., and Beiersmann, C. (2021). Augmented, mixed, and virtual reality-based head-mounted devices for medical education: Systematic review. JMIR Serious Games, 9(3):e29080.
Berke, L. (2017). Displaying confidence from imperfect automatic speech recognition for captioning. SIGACCESS Access. Comput., (117):14–18.
Dozio, N., Maggioni, E., Pittera, D., Gallace, A., and Obrist, M. (2021). May I smell your attention: Exploration of smell and sound for visuospatial attention in virtual reality. Frontiers in psychology, 12.
Gerling, K., Dickinson, P., Hicks, K., Mason, L., Simeone, A. L., and Spiel, K. (2020). Virtual Reality Games for People Using Wheelchairs, page 1–11. Association for Computing Machinery, New York, NY, USA.
Lo Valvo, A., Croce, D., Garlisi, D., Giuliano, F., Giarré, L., and Tinnirello, I. (2021). A navigation and augmented reality system for visually impaired people. Sensors, 21(9).
Luo, X., Han, M., Liu, T., Chen, W., and Bai, F. (2012). Assistive learning for hearing impaired college students using mixed reality: A pilot study. In 2012 International Conference on Virtual Reality and Visualization, pages 74–81.
Malu, M. and Findlater, L. (2015). Personalized, wearable control of a head-mounted display for users with upper body motor impairments. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, page 221–230, New York, NY, USA. Association for Computing Machinery.
Matthew Ball (2022). The metaverse: What it is, where to find it, and who will build it. Accessed: 2022-07-22.
McGlashan, S. and Axling, T. (1996). A speech interface to virtual environments. In Swedish Institute of Computer Science.
McNaney, R., Vines, J., Roggen, D., Balaam, M., Zhang, P., Poliakov, I., and Olivier, P. (2014). Exploring the acceptability of google glass as an everyday assistive device for people with parkinson’s. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, page 2551–2554, New York, NY, USA. Association for Computing Machinery.
Mirzaei, M., Kán, P., and Kaufmann, H. (2020). EarVR: Using ear haptics in virtual reality for deaf and hard-of-hearing people. IEEE Transactions on Visualization and Computer Graphics, 26(5):2084–2093.
Mirzaei, M. R., Ghorshi, S., and Mortazavi, M. (2012). Combining augmented reality and speech technologies to help deaf and hard of hearing people. In 2012 14th Symposium on Virtual and Augmented Reality, pages 174–181.
Mott, M., Cutrell, E., Gonzalez Franco, M., Holz, C., Ofek, E., Stoakley, R., and Ringel Morris, M. (2019). Accessible by design: An opportunity for virtual reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pages 451–454.
Mott, M., Tang, J., Kane, S., Cutrell, E., and Ringel Morris, M. (2020). “I just went into it assuming that I wouldn’t be able to have the full experience”: Understanding the accessibility of virtual reality for people with limited mobility. In The 22nd International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS ’20, New York, NY, USA. Association for Computing Machinery.
Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1):486–497.
Paciello, M. (2014). Web Accessibility for People with Disabilities. CRC Press, 1st edition.
Paudyal, P., Banerjee, A., Hu, Y., and Gupta, S. (2019). DAVEE: A deaf accessible virtual environment for education. In Proceedings of the 2019 on Creativity and Cognition, CC ’19, page 522–526, New York, NY, USA. Association for Computing Machinery.
Peli, E., Goldstein, R. B., Young, G. M., Trempe, C. L., and Buzney, S. M. (1991). Image enhancement for the visually impaired. Simulations and experimental results. Investigative Ophthalmology Visual Science, 32(8):2337–2350.
Ranasinghe, N. and Do, E. Y.-L. (2016). Digital lollipop: Studying electrical stimulation on the human tongue to simulate taste sensations. ACM Trans. Multimedia Comput. Commun. Appl., 13(1).
Teófilo, M., Lourenc¸o, A., Postal, J., and Lucena, V. F. (2018). Exploring virtual reality to enable deaf or hard of hearing accessibility in live theaters: A case study. In Antona, M. and Stephanidis, C., editors, Universal Access in Human-Computer Interaction. Virtual, Augmented, and Intelligent Environments, pages 132–148, Cham. Springer International Publishing.
WalkinVR (2022). Walkinvr driver. Accessed: 2022-07-22, <https://www.walkinvrdriver.com/>.
Zhao, Y., Bennett, C. L., Benko, H., Cutrell, E., Holz, C., Morris, M. R., and Sinclair, M. (2018). Enabling people with visual impairments to navigate virtual reality with a haptic and auditory cane simulation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–14, New York, NY, USA. Association for Computing Machinery.
Zhao, Y., Cutrell, E., Holz, C., Morris, M. R., Ofek, E., and Wilson, A. D. (2019). SeeingVR: A set of tools to make virtual reality more accessible to people with low vision. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–14, New York, NY, USA. Association for Computing Machinery.
Augstein, M. and Neumayr, T. (2019). A Human-Centered Taxonomy of Interaction Modalities and Devices. Interacting with Computers, 31(1):27–58.
Barteit, S., Lanfermann, L., Bärnighausen, T., Neuhann, F., and Beiersmann, C. (2021). Augmented, mixed, and virtual reality-based head-mounted devices for medical education: Systematic review. JMIR Serious Games, 9(3):e29080.
Berke, L. (2017). Displaying confidence from imperfect automatic speech recognition for captioning. SIGACCESS Access. Comput., (117):14–18.
Dozio, N., Maggioni, E., Pittera, D., Gallace, A., and Obrist, M. (2021). May I smell your attention: Exploration of smell and sound for visuospatial attention in virtual reality. Frontiers in psychology, 12.
Gerling, K., Dickinson, P., Hicks, K., Mason, L., Simeone, A. L., and Spiel, K. (2020). Virtual Reality Games for People Using Wheelchairs, page 1–11. Association for Computing Machinery, New York, NY, USA.
Lo Valvo, A., Croce, D., Garlisi, D., Giuliano, F., Giarré, L., and Tinnirello, I. (2021). A navigation and augmented reality system for visually impaired people. Sensors, 21(9).
Luo, X., Han, M., Liu, T., Chen, W., and Bai, F. (2012). Assistive learning for hearing impaired college students using mixed reality: A pilot study. In 2012 International Conference on Virtual Reality and Visualization, pages 74–81.
Malu, M. and Findlater, L. (2015). Personalized, wearable control of a head-mounted display for users with upper body motor impairments. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, page 221–230, New York, NY, USA. Association for Computing Machinery.
Matthew Ball (2022). The metaverse: What it is, where to find it, and who will build it. Accessed: 2022-07-22.
McGlashan, S. and Axling, T. (1996). A speech interface to virtual environments. In Swedish Institute of Computer Science.
McNaney, R., Vines, J., Roggen, D., Balaam, M., Zhang, P., Poliakov, I., and Olivier, P. (2014). Exploring the acceptability of google glass as an everyday assistive device for people with parkinson’s. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, page 2551–2554, New York, NY, USA. Association for Computing Machinery.
Mirzaei, M., Kán, P., and Kaufmann, H. (2020). EarVR: Using ear haptics in virtual reality for deaf and hard-of-hearing people. IEEE Transactions on Visualization and Computer Graphics, 26(5):2084–2093.
Mirzaei, M. R., Ghorshi, S., and Mortazavi, M. (2012). Combining augmented reality and speech technologies to help deaf and hard of hearing people. In 2012 14th Symposium on Virtual and Augmented Reality, pages 174–181.
Mott, M., Cutrell, E., Gonzalez Franco, M., Holz, C., Ofek, E., Stoakley, R., and Ringel Morris, M. (2019). Accessible by design: An opportunity for virtual reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pages 451–454.
Mott, M., Tang, J., Kane, S., Cutrell, E., and Ringel Morris, M. (2020). “I just went into it assuming that I wouldn’t be able to have the full experience”: Understanding the accessibility of virtual reality for people with limited mobility. In The 22nd International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS ’20, New York, NY, USA. Association for Computing Machinery.
Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1):486–497.
Paciello, M. (2014). Web Accessibility for People with Disabilities. CRC Press, 1st edition.
Paudyal, P., Banerjee, A., Hu, Y., and Gupta, S. (2019). DAVEE: A deaf accessible virtual environment for education. In Proceedings of the 2019 on Creativity and Cognition, CC ’19, page 522–526, New York, NY, USA. Association for Computing Machinery.
Peli, E., Goldstein, R. B., Young, G. M., Trempe, C. L., and Buzney, S. M. (1991). Image enhancement for the visually impaired. Simulations and experimental results. Investigative Ophthalmology Visual Science, 32(8):2337–2350.
Ranasinghe, N. and Do, E. Y.-L. (2016). Digital lollipop: Studying electrical stimulation on the human tongue to simulate taste sensations. ACM Trans. Multimedia Comput. Commun. Appl., 13(1).
Teófilo, M., Lourenc¸o, A., Postal, J., and Lucena, V. F. (2018). Exploring virtual reality to enable deaf or hard of hearing accessibility in live theaters: A case study. In Antona, M. and Stephanidis, C., editors, Universal Access in Human-Computer Interaction. Virtual, Augmented, and Intelligent Environments, pages 132–148, Cham. Springer International Publishing.
WalkinVR (2022). Walkinvr driver. Accessed: 2022-07-22, <https://www.walkinvrdriver.com/>.
Zhao, Y., Bennett, C. L., Benko, H., Cutrell, E., Holz, C., Morris, M. R., and Sinclair, M. (2018). Enabling people with visual impairments to navigate virtual reality with a haptic and auditory cane simulation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–14, New York, NY, USA. Association for Computing Machinery.
Zhao, Y., Cutrell, E., Holz, C., Morris, M. R., Ofek, E., and Wilson, A. D. (2019). SeeingVR: A set of tools to make virtual reality more accessible to people with low vision. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–14, New York, NY, USA. Association for Computing Machinery.
Publicado
17/10/2022
Como Citar
FERNANDES, Filipe; WERNER, Cláudia.
Accessibility in the Metaverse: Are We Prepared?. In: WORKSHOP SOBRE ASPECTOS DA INTERAÇÃO HUMANO-COMPUTADOR NA WEB SOCIAL (WAIHCWS), 13. , 2022, Diamantina.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 9-15.
ISSN 2596-0296.
DOI: https://doi.org/10.5753/waihcws.2022.226618.